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Abstract

Three experiments investigated the role of a speci®c language in human representations of

number. Russian±English bilingual college students were taught new numerical operations

(Experiment 1), new arithmetic equations (Experiments 1 and 2), or new geographical or

historical facts involving numerical or non-numerical information (Experiment 3). After

learning a set of items in each of their two languages, subjects were tested for knowledge

of those items, and new items, in both languages. In all the studies, subjects retrieved infor-

mation about exact numbers more effectively in the language of training, and they solved

trained problems more effectively than untrained problems. In contrast, subjects retrieved

information about approximate numbers and non-numerical facts with equal ef®ciency in their

two languages, and their training on approximate number facts generalized to new facts of the

same type. These ®ndings suggest that a speci®c, natural language contributes to the repre-

sentation of large, exact numbers but not to the approximate number representations that

humans share with other mammals. Language appears to play a role in learning about

exact numbers in a variety of contexts, a ®nding with implications for practice in bilingual

education. The ®ndings prompt more general speculations about the role of language in the

development of speci®cally human cognitive abilities. q 2001 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Research over the last decades has provided evidence for representations of

number in a variety of non-human animals (for reviews see Boysen & Capaldi,

1993; Davis & PeÂrusse, 1988; Dehaene, 1997; Gallistel, 1990). For example,
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untrained monkeys represent the exact number of objects in a scene, provided the

number is small, and take account of the effects of additions and subtractions of

single objects (Hauser, Carey, & Hauser, 2000; Hauser, MacNeilage, & Ware,

1996). Trained and untrained birds, ®sh, and mammals represent the approximate

numerosity of larger sets of items (for discussion see Gallistel, 1990). After exten-

sive training, several chimpanzees and one parrot learned symbols for exact

numbers of objects in sets as large as 10 (Boysen & Capaldi, 1993; Matsuzawa,

1985; Pepperberg, 1987), two monkeys learned to order the numbers 1±4 and gave

ordinal judgements for numbers up to 8 (Brannon & Terrace, 1998), and one chim-

panzee learned to use number symbols to enumerate objects under conditions

suggesting a process of addition (Boysen & Berntson, 1989). In all these cases,

the performance of non-human animals either equaled or exceeded the performance

of human infants tested with no training (for discussion see Gallistel & Gelman,

1992; Hauser & Carey, 1998).

Although these abilities suggest considerable continuity in number representa-

tions over human evolution, there are striking discontinuities as well. Between the

ages of 2 and 4, human children learn verbal counting (see Gelman & Gallistel,

1978; Wynn, 1990). Once counting is mastered, children generalize the counting

procedure to larger numbers with no evident upper bound and with no speci®c

training, a feat not seen in any animal (Gelman & Gallistel, 1978; Wynn, 1990;

cf. Matsuzawa, 1985). School children then learn a set of elementary arithmetic facts

and calculation procedures that allow them to perform arithmetic operations on all

the numbers they can count (for review see Dehaene, 1997). Finally, children and

adults extend their number representations beyond the limits of their counting

procedures, using arithmetic operations to pick out fractions, zero, and negative

numbers (Gelman, 1991). All these developments distinguish human children

from the most highly trained non-human animals.

What is the source of these accomplishments? Some investigators have suggested

that humans are endowed with a species-speci®c system of knowledge of number, and

that uniquely human number representations arise as children employ this system to

single out numerosities and explore their interrelations (e.g. Carey & Spelke, 1994;

Gelman & Gallistel, 1978). Others have proposed that humans are endowed with the

same cognitive systems as are other animals, and that our greater attainment of

number knowledge stems from quantitative advantages such as a greater memory

capacity or general intelligence (e.g. Putnam, 1980). A third proposal is our focus

here. Humans may have the same initial number capacities as other animals but may

develop new number representations through the use of a speci®c language. The

language faculty, operating in conjunction with the cognitive systems that humans

share with other animals, underlies distinctively human knowledge of number.

Connections between knowledge of language and knowledge of number have been

suggested on theoretical and empirical grounds. Chomsky (1986) noted that both the

sentences of a language and the numbers in a counting sequence have the property of

discrete in®nity, and he suggested that the same recursive device underlies both (cf.

Bloom, 1994; Hurford, 1987). Neuropsychologists have found that disorders in

number representation frequently are accompanied by disorders in language
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(Dehaene & Cohen, 1991; McCloskey, 1992; Warrington, 1982). Students of cogni-

tive development have observed that advances in abilities to represent numbers

accompany the onset of verbal counting (Gelman & Gallistel, 1978; Wynn, 1990)

and that ef®ciency of arithmetic calculation is related to the ef®cient articulation of

number words (Ellis & Hennelly, 1980; Gathercole & Baddeley, 1993).

Finally, many observers have noted that speakers of two or more languages tend

to count and perform arithmetic in just one of their languages ± usually the language

in which they originally learned arithmetic. In some anecdotal cases, this tendency is

both extreme and puzzling. For example, a person who learns elementary arithmetic

in one language may move to a different language community, become dominant in

the new language to the point of speaking and dreaming in that language and losing

facility in the original language, and yet resort to the ®rst language when adding up a

bill or counting change (see Dehaene, 1997). In experiments, bilinguals have been

found to solve arithmetic problems with greater speed and accuracy when the

problems are presented in their ®rst language (French-Mestre & Vaid, 1993; Gonza-

lez & Kolers, 1987; Kolers, 1968; Marsh & Maki, 1976; McClain & Huang, 1982).

All the empirical ®ndings, however, can be interpreted in two ways. First, it is

possible that numbers and arithmetic facts are represented in the speci®c natural

language in which they are learned. When problems are presented in a different

language, they either must be translated to the language of learning or their solutions

must be calculated anew. The longer response times and lower accuracy at retrieving

arithmetic facts in a second language therefore would stem either from a translation

process or from less well-established fact-learning in the second language (Dehaene,

1997). Second, it is possible that numbers and arithmetic facts are represented in a

language-independent manner. In order to access those representations, however, one

must transform a spoken problem into a representation in the system in which the

answer is computed, and then transform the result of the computation back into the

spoken language for production. These decoding and encoding processes might

proceed automatically, even when no spoken response is required, producing the

language-speci®c effects described above (Holender & Peereman, 1987; McCloskey,

1992).

In the present experiments, we attempted to distinguish these possibilities by

investigating whether different kinds of number facts are represented in a

language-dependent or language-independent manner. We followed the tradition

of investigating language and number through studies of bilingual learners, with

two innovations. First, we conducted training studies in which bilingual subjects

learned new number facts in each of their languages and then were tested on those

facts in both languages. This method allowed us to determine whether subjects

showed language-speci®c training effects only for the language in which they habi-

tually perform arithmetic or for both languages. It also allowed us to distinguish

language-dependent number representations from language-speci®c encoding and

decoding processes, because we could present subjects with different facts involving

the same numbers in their two languages, giving equal training across languages to

encoding and decoding of the number words.

Second, the primary question behind our studies is not whether subjects show

E.S. Spelke, S. Tsivkin / Cognition 78 (2001) 45±88 47



language-speci®c learning of number facts but where they show language speci®city

and where they do not. We tested the hypothesis that learning of new facts drawing

on humans' unique, exact number representations is language-dependent, whereas

learning of new facts drawing on the representations humans share with other

animals is not. By this hypothesis, large, exact number facts learned in one language

should not be immediately accessible to queries in the other language, but facts

about large, approximate numbers should be equally accessible to subjects regard-

less of the language in which they are queried.

We began with a study assessing bilingual learning of the exact results of large

number additions in base 10, the exact results of additions in novel bases, and the

approximate results of logarithmic and cube root functions (Experiment 1). Next we

compared bilingual learning of new facts concerning the exact and the approximate

sums and products of pairs of large numbers (Experiment 2). Our ®nal experiment

compared bilingual learning of large, exact numerical facts and non-numerical facts

in ®ctitious history and geography lessons. After presenting these experiments, we

propose an account for the observed patterns of language-dependence and language-

independence in number representations and attempt to characterize, more gener-

ally, the role of language in creating representations that are unique to humans. We

also sketch some possible implications of our research for contemporary debates

about bilingual education.

2. Experiment 1

Russian±English bilingual college students were taught four sets of facts invol-

ving relations among large, exact numbers. Two sets of facts involved the familiar

operation of addition in base 10: adding either 54 or 63 to each of a set of two-digit

numbers. Two further sets of facts involved the less familiar operations of addition

in base 6 and base 8. The students also were taught two sets of facts involving large,

approximate numbers: the approximate cube roots and the approximate base 2 logs

of each of a set of large numbers. Each student learned one set of exact large number

addition facts, exact novel base addition facts, and approximate number facts in each

language. Half the facts in each set involved speci®c numbers that appeared only in

one language over the course of the experiment, and half the facts involved numbers

that appeared in both languages. For the latter facts, exposure to the number words

and practice at any decoding and encoding processes involving those words were

equated across the two languages.

After 2 days of training (in which subjects' performance improved for all the

problem sets), subjects were tested on all the facts in both languages. The speed

and accuracy of their responses were compared in the trained and untrained languages

for each set of problems and for both monolingually- and bilingually-presented

numbers. If the language-of-learning advantage for arithmetic calculation stems

from processes that translate from the language of input to a language-independent

system of representation, then subjects should perform better when tested in the

language in which they learned and habitually perform arithmetic (Russian). More-
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over, subjects should perform better in the language of training than in the untrained

language for all facts involving monolingually-trained numbers. Repeated exposure

to a number in one language should enhance the translation process for that number

and language. In contrast, if the language-of-learning advantage for arithmetic calcu-

lations stems from the use of a language-speci®c system of representation, then

performance in the language of training should exceed performance in the untrained

language for all facts that require this system, whether the facts involved monolin-

gually- or bilingually-trained numbers and whether the facts were learned in Russian

or in English. We predicted that facts involving exact large numbers would show this

language speci®city, whereas facts involving approximate large numbers would not.

A secondary purpose of the experiment was to investigate whether subjects truly

develop exact and approximate number representations by investigating whether

training on speci®c items within a class of facts generalized to other facts within

the class. During the test sessions, subjects were presented with some items on

which they had not been trained (e.g. cube root problems involving new numbers

of comparable magnitude to those in the trained problems, and exact large addition

problems in which a new number within the range of the training numbers was

incremented by 54). Performance on these untrained problems was compared to

performance on the trained problems, both in the language of training and in the

untrained language. If subjects use approximate number representations to represent

the new set of log and cube root facts, then their distinct approximate number

representations should overlap (see Dehaene, 1997; Gallistel & Gelman, 1992),

and learning should generalize to corresponding facts involving other numbers

within the same range. In contrast, if subjects use exact number representations to

represent the new sets of addition facts, then their representations of different

number facts should not overlap and no such generalization should occur.

2.1. Method

2.1.1. Subjects

The participants were four male and four female bilingual speakers of Russian

and English, ranging in age from 18 to 24 years (mean 19.8 years). They were

undergraduate or graduate students living in Ithaca, NY, and were solicited through

the ethnic clubs on Cornell's campus. All subjects were native speakers of Russian,

spoke no English before adolescence, spent at least 3 years in the US, and were

comfortable conversing and reading in both Russian and English. The mean age at

which the subjects started learning English was 15.4 years (range 13±19 years), and

the mean time since coming to the US was 3.8 years (range 3±5 years). Subjects

were required to pass comprehension tests in Russian and English before they were

allowed to participate (see below). One additional subject was dropped from the

study when the screening test revealed poor English comprehension.

2.1.2. Materials

The experiment was conducted on a Macintosh SE computer, with all the tasks

appearing on the computer's 12 inch monitor. All stimuli appeared within a 512 £ 600
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pixel viewing area on the monitor. The screen was erased before the next stimulus was

presented; instant switching was used to mask the previous stimulus. The displays in

the two languages were designed to be as similar as possible in size and layout. For the

stimuli in English, all questions appeared in Geneva font size 48, and answers

appeared in Geneva font size 28. For the stimuli in Russian, the Russian Central

font was used in the same point sizes as for the English stimuli.

Stimuli consisted of six categories of arithmetic problems, described below, with

one problem and two potential answers presented on the screen on each trial. All

problems and answers were written out in numerical words either in Russian or in

English, with the two candidate answers appearing below the problem to the left and

right of center (see Table 1 for examples). Subjects selected the correct answer by

pressing a key located on the side where that answer appeared (`a' or `k'). The

display remained on the computer screen until the subject answered the question,

after which a feedback display, specifying whether the answer was correct or incor-

rect, appeared on the screen for 600 ms. Before the start of each set of training and

test items, subjects were given three ®ller items to accustom or re-accustom them to

the problems and procedure.

The six categories of problems were as follows (see Appendix A for examples):

(1) Exact addition with addend 54: subjects had to add 54 to each of 12 numbers

ranging in value from 47 to 95. The two alternative answers were the correct sum

and a distractor in which the tens place differed from the correct answer by 1, with

the differences balanced in the underestimation and overestimation directions.1

(2) Exact addition with addend 63: subjects added 63 to each of 12 numbers

ranging in value from 39 to 96. Again, the alternatives were the correct answer

and a distractor in which the tens place was raised or lowered by 1.

(3) Exact addition in base 6: subjects learned the sums of 12 base 6 additions in

which the ®rst addend ranged from 1 to 3-3, the second addend ranged from 2 to 5-1,

and the sum ranged from 3 to 1-2-1. The response alternatives were the correct

answer and a distractor in which one of the digits was raised or lowered by 1 from

the correct answer.

(4) Exact addition in base 8: subjects learned the sums of 12 base 8 additions in

which the ®rst addend ranged from 1 to 4-3, the second addend ranged from 3 to 4-7,

and the sum ranged from 4 to 1-1-5. The response alternatives again were the correct

answer and a distractor in which one of the digits was raised or lowered by 1 from

the correct answer.

(5) Approximation of cube roots: subjects learned to estimate the cube roots of 12

numbers ranging from 9 to 5830 by choosing the closer of two whole-number

responses. When the correct answer was 4 or less, the distractor differed from it

by 1 in either direction. When the correct answer was larger, the distractor differed

from it by 2 in either direction.
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(6) Approximation of logs base 2: subjects learned to estimate the base 2 loga-

rithms of 12 numbers ranging from 9 to 8250 by choosing the closer of two whole-

number responses. When the correct answer was 4 or less, the distractor was 1 unit

larger or smaller. When the correct answer was larger, the distractor was 2 units

larger or smaller.

Before the study proper, subjects were given a comprehension test composed of a

variety of items with addition, multiplication, division, and subtraction problems in

both Russian and English. The problems were presented on the same computer, with

all numbers written as in the experiment. Subjects responded to these two-choice

questions by pressing one of two keys on the computer, as in the main experiment.

Only subjects whose mean reaction times in both languages were within 500 ms of

each other were permitted to continue with the experiment. One subject was dropped

from the study when the comprehension test detected his marked superiority in

Russian (mean RT � 2815 ms) over English (mean RT � 3550 ms).

2.1.3. Design

Subjects were given two training sessions and one test session in each of their

languages, with Russian and English sessions occurring in alternation. Each training

session consisted of three blocked sets of items, with exact addition of 54, exact

addition in base 6, and approximate cube root problems occurring during one session

and exact addition of 63, exact addition in base 8, and approximate log problems

occurring during the other session. Each test session consisted of all six blocked sets

of items. The order of languages during training, the pairing of languages and

problem sets during training, and the order of languages during testing were ortho-

gonally counterbalanced across subjects.

Each set of training problems consisted of six repetitions of each of the 12 items in

the set, for a total of 72 trials per set (216 trials per session). Each set of test problems

consisted of two repetitions of each of six trained items, and two repetitions of each

of six untrained items, for a total of 24 trials per set (144 trials per session). The

correct answer appeared on the left for half the problems in each training and test set.

For half the problems, moreover, the numbers in the answers appeared in different

problems in the other language (`bilingually-trained numbers'). Problems were

presented in a random order within each set of 24 items with the restriction that
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Example problems for Experiment 1

Exact large addition

What is the sum of ®fty-four and forty-eight?

One hundred two Ninety-two

Exact novel base addition

In base six, what is the sum of two and ®ve?

One-one Two-one

Approximation

Estimate the approximate cube root of twenty-nine.

Four Three



no problem could occur twice in succession. Each set of training and test problems

was preceded by three ®ller items.

2.1.4. Procedure

All training sessions in each language were preceded by greetings and casual

conversation in that language. Because all subjects lived and worked in an

English-speaking environment, a further effort was made to re-accustom them to

working with Russian-language materials. Immediately prior to each training

session in Russian, subjects read a different portion of a transcribed lecture in

Russian and conversed informally with the experimenter about it.

For all training sessions each problem set began with instructions speci®c to that

problem set and with example problems, presented in the language appropriate to

that session. Throughout training and testing, subjects initiated the ®rst trial by

pressing the space bar, and they terminated the trial by pressing a response key

indicating whether the number on the left or the right correctly answered the

problem. Feedback specifying whether the response was correct or incorrect

appeared on the screen immediately after the subject's response and remained on

the screen for 600 ms. If no response occurred within 10 s, subjects received a third

feedback display indicating that the trial had timed out. The next trial began imme-

diately after the termination of the feedback display, with the appearance of the next

problem on the screen.

Before each testing session, subjects conversed with the experimenter in the

language to be used during that session. The procedure for the test trials was iden-

tical to that for the training trials, except that no speci®c set of instructions or

examples explaining how to solve the problems were given to the subjects. Instruc-

tions on the computer screen prior to each block of test problems indicated the

category of problems subjects were about to solve (e.g. `addition in base 6').

Subjects were encouraged to respond ef®ciently, with equal emphasis on speed

and accuracy, throughout the training and test sessions. They were given the oppor-

tunity to take breaks after each set of 72 items during the training sessions and after

each set of 48 items during the testing sessions. Each training and test session lasted

about 1 h.

2.1.5. Data treatment

Latency data were analyzed for all trials on which a subject gave the correct

response within the allotted 10 s time period. (Erroneous and timed-out trials

were infrequent, and results are similar when all data are included.) For the training

problems, mean response latencies were calculated separately for each subject, task,

language, and training session.2 For the test problems, mean response latencies were

calculated separately for each subject, task, language, and problem type (trained or

untrained). The principal analyses used parametric statistics based on the mean

response latencies. Error rates were calculated for each subject, session, and condi-
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tion as the proportion of trials with either an erroneous or a timed-out response.

Because these rates were low (see Figs. 1 and 2), they were not analyzed. Planned

analyses tested (1) for the effect of monolingual versus bilingual number word

training on performance on all problems, (2) for the effect of language change on

performance on trained problems, and (3) for the effect of problem novelty on

performance in the trained language. Further post-hoc analyses tested for other

patterns in the data (see below).

2.2. Results

2.2.1. Training sessions

Fig. 1 presents the mean reaction times and error rates for each set of problems on

each day of training. Accuracy increased and latency declined from day 1 to day 2

for all types of problems in both languages. A 3 (task) £ 2 (language of training:

Russian versus English) £ 2 (training day) ANOVA on the response latencies

revealed main effects of training day (F�1; 7� � 183, P , 0:001) and of task

(F�2; 14� � 27, P , 0:001), and no interactions. The ®rst effect indicates that

subjects responded faster at the end of training, irrespective of the language of

training or the task. The second effect was explored further with Tukey HSD

tests, which indicated that subjects performed faster on the approximation tasks

than on either the exact addition task with unfamiliar bases (P , 0:05) or the

exact addition task with large numbers (P , 0:01), and faster on the unfamiliar

bases task than on the large number addition task (P , 0:01). These effects may

re¯ect both the greater length of the large number addition problems (on average

those problems contained 86.2 characters, whereas the approximate problems and

the novel base problems contained 68.3 and 61.7 characters, respectively) and the

unfamiliarity of the novel bases task.

2.2.2. Test sessions

2.2.2.1. Effects of language on number word processing. We begin by comparing

subjects' performance on all problems for which numbers were presented only in a

single language to their performance on problems for which numbers were presented

with equal frequency (in different problems) in both languages. Two 2 (number

training: monolingual versus bilingual) £ 2 (language of training: Russian versus

English) £ 3 (task) ANOVAs on the response latencies and response accuracy for all

test problems presented in the untrained language revealed no main effects or inter-

actions involving the number training variable. When bilingual subjects solved

problems in a new language, they were no faster when the numbers in the problems

had been trained in both languages (mean RT � 2840:2 ms) than when the numbers

had been trained only in the language not being tested (mean RT � 2741:3 ms).

Error rates also did not differ for bilingually versus monolingually-trained numbers

(respective means 1.08 and 1.17%). Therefore, we disregard the number training

factor in all further analyses.

E.S. Spelke, S. Tsivkin / Cognition 78 (2001) 45±88 53



2.2.2.2. Generalization of performance on trained problems to a new language. Fig.

2 (left) presents the mean reaction times and error rates for each set of trained

problems when subjects performed in the trained and in the untrained languages.

For the two tasks involving exact number representations, subjects were faster when

performing in the language of training. This effect was obtained both when subjects

were trained in their ®rst language (Russian) and when they were trained in their

E.S. Spelke, S. Tsivkin / Cognition 78 (2001) 45±8854
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on the ®rst and second days of training.



second language (English). For the tasks involving approximate number

representations, in contrast, subjects performed with nearly equal speed in the
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untrained problems.



trained and untrained languages. Accuracy was high on all tasks and in both

languages.

For the latency data, a 3 (task) £ 2 (language of training: Russian versus

English) £ 2 (language change: same language as training versus different language)

ANOVA revealed main effects of task (F�2; 14� � 4:67, P , 0:05) and language

change (F�1; 7� � 48:8, P , 0:001), and an interaction between these factors

(F�2; 14� � 17:8, P , 0:001). There was also an interaction between task and

language of training (F�2; 14� � 30:8, P , 0:001). Tukey tests revealed that

subjects were faster overall at solving the exact large addition problems than at

solving the exact addition problems with novel bases (P , 0:05). Moreover,

subjects were faster in solving both types of exact addition problems in the language

of training (each P , 0:01) but solved the approximation problems with equal speed

in the two languages. Finally, subjects performed the exact large additions faster

after training in English than after training in Russian (P , 0:01), and they

performed the exact additions with novel bases faster after training in Russian

than after training in English (P , 0:01).

To understand these interactions better, separate analyses were performed for

each of the three types of task. For the exact large addition tasks, the 2 (language

of training) £ 2 (language change) ANOVA performed on the latency data revealed

main effects of language of training (F�1; 7� � 18:9, P , 0:005) and of language

change (F�1; 7� � 24:2, P , 0:005), and no interaction. Subjects responded faster

after being trained in English, and they responded faster when queried in the

language of training than when queried in the untrained language. In neither case

was greater speed accompanied by lower accuracy (see Fig. 2).

For the exact addition tasks with novel bases, the same 2 £ 2 ANOVA revealed

the same main effects of language of training (F�1; 7� � 29:5, P , 0:005) and

language change (F�1; 7� � 304:1, P , 0:001), and no interaction. Subjects

performed faster after training in Russian, and they performed faster when answer-

ing questions in the trained language. Accuracy levels suggested that a speed±

accuracy trade-off had little in¯uence on either of these effects (Fig. 2).

For the approximate log and cube root tasks, in contrast, the same 2 £ 2 ANOVA

revealed no main effects or interactions (all F , 1:2). Subjects responded with equal

speed after training in English and Russian, and they responded with equal speed

when tested in the trained and in the untrained language.

2.2.2.3. Generalization of performance in the trained language to new problems.

Turning now to the question of whether training generalized to new problems, Fig. 2

(right) presents the mean accuracy and response latencies of performance on the

novel problems for each language and task. A comparison of the solid bars on the

left and right sides of Fig. 2 reveals a difference between the exact and the

approximate number tasks. For the approximate tasks, untrained and trained

problems were solved with equal speed, providing evidence that training

generalized beyond the particular problems that subjects learned. For the exact

tasks, in contrast, untrained problems were solved more slowly than trained

problems for both languages of training. Accuracy was high for both old and new
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problems. The differences in response latencies were con®rmed by a 3 (task) £ 2

(language of training: Russian versus English) £ 2 (problem novelty: trained versus

untrained problems) ANOVA on response latencies to test problems presented in the

language of training. The analysis revealed a main effect of problem novelty

(F�1; 7� � 89:4, P , 0:001), quali®ed by interactions between problem novelty

and task (F�2; 14� � 15:6, P , 0:001), and problem novelty, task and language of

training (F�2; 14� � 30:2, P , 0:001). In addition, there was again an interaction of

task and language of training (F�2; 14� � 12:8, P , 0:005). Tukey HSD tests

applied to the interactions revealed that the subjects were faster at solving old

than new exact addition problems both in base 10 and in unfamiliar bases (both

P , 0:01), but they were equally fast at solving old and new approximate log and

cube root problems. Overall, subjects were faster at solving both old and new exact

large addition problems when trained and tested in English (P , 0:05), and they

were faster at solving both old and new exact addition problems in novel bases when

trained and tested in Russian (P , 0:01).

To investigate the interactions further, separate analyses of the problem novelty

effect were performed for each task. For the exact large addition task, the 2

(language of training) £ 2 (problem novelty) ANOVA revealed main effects of

language of training (F�1; 7� � 6:83, P , 0:05) and problem novelty

(F�1; 7� � 28:61, P , 0:001), and an interaction between these factors

(F�1; 7� � 14:52, P , 0:01). Subjects performed faster in English than in Russian,

they performed faster on trained than on untrained problems, and the advantage for

trained problems was larger in English. For the exact novel bases task, the ANOVA

revealed signi®cant effects of language of training (F�1; 7� � 73:74, P , 0:001) and

problem novelty (F�1; 7� � 71:10, P , 0:001), and an interaction between the

factors (F�1; 7� � 25:17, P , 0:005). Subjects performed faster in Russian than in

English, they performed faster on trained than on untrained problems, and the

advantage for trained problems was larger in Russian. For the approximate logs/

cubes task, the ANOVA revealed no signi®cant effects (all F , 1).

2.2.2.4. Further effects. Inspection of the data in Fig. 4 suggests two further effects

of training on subjects' performance. First, subjects appeared to perform better on

new exact problems when they were tested in the language in which they learned

similar problems (i.e. problems sharing an addend with the test problems for the

exact large addition task and problems in the same base for the exact novel bases

task) than when they were tested in the language in which they learned less similar

problems (i.e. problems with two different addends or in a different base). This

apparent effect was analyzed by a 3 (task) £ 2 (language of training) £ 2

(language change) ANOVA, which revealed signi®cant main effects of task

(F�2; 14� � 15:28, P , 0:001) and language change (F�1; 7� � 22:34, P , 0:005),

and an interaction between these factors (F�2; 14� � 7:55, P , 0:01). Separate

analyses of each of the three tasks revealed that the effect of language change

(i.e. training with similar problems in the same versus different language) was

signi®cant for the exact large addition task (F�1; 7� � 15:4, P , 0:01), but not for

the exact novel bases task or for the approximate logs/cubes task (both F , 1).
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Second, when subjects solved exact number problems (both large number addi-

tion and addition in novel bases) in the untrained language, they appeared to perform

faster on problems on which they had been trained in their other language than on

new problems. This effect was con®rmed by a 3 (task) £ 2 (training language) £ 2

(problem novelty) ANOVA on response latencies to test problems presented in the

untrained language. The analysis revealed main effects of task (F�2; 14� � 22:4,

P , 0:001) and problem novelty (F�1; 7� � 32:8, P , 0:001), and interactions

between task and problem novelty (F�2; 14� � 10:3, P , 0:005) and task, language

of training and problem novelty (F�2; 14� � 9:0, P , 0:005). A separate ANOVA

on the exact large addition task revealed a main effect of problem novelty

(F�1; 7� � 17:11, P , 0:005) and no other effects. A separate ANOVA on the

exact novel bases task revealed the same main effect of problem novelty

(F�1; 7� � 38:41, P , 0:001), and an interaction of problem novelty with language

of training (F�1; 7� � 13:26, P , 0:01), indicating that the problem novelty effect

was greater when the untrained language was English. Finally, a separate ANOVA

on the approximate tasks revealed no effect of problem novelty (F , 1) and no other

signi®cant effects.

2.3. Discussion

Bilingual subjects who learned new facts about approximate numbers in one

language retrieved those facts with equal ef®ciency in their two languages. This

®nding quali®es both the anecdotal reports and experimental ®ndings of language

speci®city in bilingual arithmetic. When people learn the approximate answers to

logarithm and cube root problems, their learning appears to draw on representations

that are independent of language.

In contrast, when the same subjects learned new facts about exact numbers in one

language, they retrieved those facts more ef®ciently in the language of training than

in the untrained language. This ®nding cannot be attributed to any habitual prefer-

ence for representing exact number in one of the two languages, because it was

observed in each subject for both the subject's languages. Although all the subjects

preferred to perform elementary arithmetic in Russian, new problems taught in

English were performed better in English. This ®nding also cannot be attributed

to an effect of the training sessions on the ef®ciency of translation processes between

the number words and a language-independent representation, because it was as

large for problems involving bilingually-trained number words as for those invol-

ving monolingually-trained number words. These ®ndings provide evidence that

exact number facts, involving both the familiar base 10 addition and the more

novel addition operation in bases 6 and 8, are represented at least partly in a

language-speci®c form, in accord with the theses of Dehaene (1997) and Gallistel

and Gelman (1992) and contrary to that of McCloskey (1992).

The students' performance in solving new problems within the training sets (e.g.

calculating the cube root of a new four-digit number, or adding 54 to a new two-digit

number) sheds further light on the nature of their number representations. For the log

and cube root estimation problems, learning generalized fully from old to new
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problems in both languages. This ®nding suggests that subjects represented each

large number as `a blur on the number line' (Gallistel & Gelman, 1992; see also

Dehaene, 1997). Because each approximate numerosity was represented as a range

of numbers rather than as a single discrete point, subjects' learning generalized to

other facts within the range. The approximate number representations formed by

these bilingual subjects therefore appear to be similar to those observed in a variety

of animals, as others have proposed (Dehaene, 1997; Gallistel, 1990).

For the exact number tasks, three ®ndings emerged from the analyses of perfor-

mance on new problems. First, new problems were solved in the trained language

more slowly (and with equal or higher error rates) than old problems. This ®nding

provides evidence that subjects represented the numbers in the exact addition

problems in a manner that failed to generalize to other, neighboring numbers.

Indeed, subjects may have represented each exact addition fact as a string of words.

Second, subjects solved new exact large addition problems more effectively when

they were tested in a language in which they had been trained on similar problems

(i.e. problems sharing one of the addends) than when they were tested in a language

in which they had been trained on less similar problems (problems with two different

addends). No such effect of language change was observed for the exact novel bases

problems (in which the addends were equally likely to differ across languages) or for

the approximation problems. This effect suggests that language-speci®c learning

in¯uences exact arithmetic performance not only when one confronts exactly the

same problem on which one was trained but also when one confronts a new problem

that shares features of the trained problem.

Third, subjects showed an advantage for solving trained over untrained problems

in the untrained as well as the trained language. In the untrained language, subjects'

more ef®cient performance with trained problems might be taken to suggest that the

representations underlying exact number arithmetic learning are not entirely

language-speci®c. Exact large number representations may involve both

language-dependent and language-independent processes (Dehaene, 1997; Gallistel

& Gelman, 1992). Alternatively, learning exact number addition facts may be

entirely language-dependent, but subjects may use facts learned in one language

to solve problems in their other language by translating problems into the language

of training. On the latter view, subjects may perform more quickly with trained

problems in the untrained language because translating the problems into the

language of training and retrieving the trained answer is less time-consuming than

solving the problems anew in the untrained language.

We have suggested that performance on the log and cube root problems differed

from performance on the addition problems because the former involved approx-

imate number representations, whereas the latter involved exact number representa-

tions. Nevertheless, the ®ndings of Experiment 1 are consistent with other possible

distinctions between language-dependent and language-independent learning. For

example, it is possible that facts involving binary operations are learned in a

language-speci®c manner, whereas facts involving unary operations are not. As a

second example, it is possible that facts with two- to three-digit answers or with

unfamiliar novel base answers depend on language, whereas facts with familiar
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small number answers do not. Recall that subjects answered the log and cube root

problems more quickly during training than the exact addition problems. Although

this effect could stem from factors such as the differing lengths of the different verbal

problems and the differing familiarity of the notation used in different tasks (see

above), it could also be explained by differences in the processing of unary versus

binary operations or of highly familiar versus less familiar numbers. To distinguish

these possibilities, the next experiment contrasted subjects' performance of a single

arithmetic operation ± addition ± under conditions requiring either exact or approx-

imate representations of number.

3. Experiment 2

The primary purpose of Experiment 2 was to investigate whether exact, but not

approximate, number representations are language-dependent, by comparing

Russian±English bilingual subjects' performance on base 10 addition when either

an exact or an approximate answer was required. All subjects were taught a set of

new large number addition facts in one language and then were tested on knowledge

of those facts in both their languages. Subjects were trained under either of two

conditions. One group of subjects learned the exact answers to these facts, and the

other group learned the approximate answers to these facts. The ®rst condition was

essentially a replication of the exact large arithmetic task in Experiment 1; as in that

experiment, subjects were expected to perform these problems more effectively in

the language of training than in the untrained language. The critical condition was

the second. If language-speci®c processing is engaged by binary operations such as

addition or by processing of large or unfamiliar numbers, then subjects taught new

approximate number addition facts should show the same advantage for the

language of training as those taught exact number addition facts. In contrast, if

language-speci®c processing is engaged by the representation of exact large

numbers, then the subjects taught new approximate number facts should perform

equally well in their two languages, as did subjects taught new log and cube root

estimation problems in Experiment 1.

Experiment 2 had two subsidiary purposes. First, it investigated further the ®nd-

ing from Experiment 1 that learning to estimate the answers to arithmetic problems

generalizes to new problems of the same type, whereas learning the exact answers to

problems results in better performance of trained than of untrained problems in both

the trained and the untrained language. To replicate these ®ndings and determine

whether approximate addition training generalizes to new problems, the students in

Experiment 2 were tested on new exact and approximate addition problems in each

language, and their performance on the new problems was compared to performance

on the trained problems.

A further purpose of Experiment 2 was to address a controversy concerning

multiplication. Based on his analyses of a variety of animal studies, Gallistel

(1990) proposed that the approximate, language-independent number representa-

tions found in animals serve as inputs to the operation of multiplication. The
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evidence for multiplication processes in animals, however, is indirect and open to

other explanations (e.g. Church & Meck, 1984). Based on analyses of human patient

data and contrasting analyses of animal experiments, Dehaene (1997) proposed that

approximate number representations enter into the operations of addition and

subtraction but not multiplication. To shed further light on this controversy, each

subject in Experiment 2 was taught a set of new multiplication facts in the language

not used for the addition training. Subjects trained on exact addition facts were

taught new approximate multiplication facts, whereas those trained on approximate

addition facts were taught new exact multiplication facts.3 If humans have a

language-independent system for multiplying approximate large numerosities,

then the subjects taught approximate number multiplication facts should generalize

their learning both to the untrained language and to untrained problems involving

numbers within the same range. If no language-independent multiplication system

exists, in contrast, then all the subjects should have shown language-speci®c and

item-speci®c learning of multiplication facts, regardless of whether exact or approx-

imate answers were required.

3.1. Method

The method was the same as for Experiment 1, except as follows.

3.1.1. Subjects

The participants were three female and ®ve male bilingual speakers of Russian

and English, ranging in age from 18 to 32 years (mean 22.5 years). Subjects were

undergraduate or graduate students at Cornell University who began learning

English at a mean age of 15.3 years (range 12±18 years) and who had been in the

US for an average of 4.9 years (range 3.5±6.5 years). All subjects passed the preli-

minary comprehension test from Experiment 1, and all spoke and comprehended

both Russian and English with ease.

3.1.2. Materials

Subjects were tested with the same computer as in Experiment 1, with Adobe

Times Ten Cyrillic font used for the Russian stimuli. The problem sets were as

follows (see Appendix A for examples):

(1) Exact addition: 12 sums were presented, with the ®rst addend ranging from 22

to 86, the second addend ranging from 18 to 86, and the sum ranging from 47 to 153.

The two response alternatives were the correct sum and a distractor in which the tens

place was increased or decreased by 1.

(2) Approximate addition: these problems were identical to the exact addition

problems except for the candidate answers, which ranged from 50 to 160. All
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response alternatives were multiples of 10; one was the nearest such multiple and the

other was 30 units larger or smaller than that multiple.

(3) Exact multiplication: 12 products were presented, with the ®rst factor ranging

from 12 to 28, the second factor ranging from 3 to 9, and the candidate answer

ranging from 47 to 156. The two response alternatives were the correct product and a

number that was 10 larger or smaller.

(4) Approximate multiplication: these problems were identical to the exact multi-

plication problems except for the candidate answers, which ranged from 50 to 160.

All response alternatives were multiples of 10; one was the nearest such multiple and

the other was 30 units larger or smaller than that multiple.

3.1.3. Design

Each subject participated in four training sessions and two test sessions. A train-

ing session consisted of one set of problems in one language; every subject was

trained on two sets of problems, one in each language, for two sessions each. Half

the subjects were trained on exact addition and approximate multiplication

problems, and half were trained on approximate addition and exact multiplication

problems. A test session consisted of blocked presentations of all four sets of

problems in one language, with each session in a different language. The pairing

of training languages and problems, the order of training sessions, and the order of

test sessions were counterbalanced across subjects.

During training, each problem set consisted of 12 different problems presented six

times (72 problems per set and per session). During testing, a problem set consisted

of six problems that the subjects were trained on and six new problems of the same

type. Each problem was presented twice during the course of testing (24 problems

per set; 96 problems per session). Every blocked set of problems was preceded by

three ®ller problems, after which problems appeared in a random order with the

restriction that no problem could appear twice in succession. Within a set, the

correct answer appeared on the left and right with equal frequency.

3.1.4. Procedure

Before the study, the exact and the approximate tasks were each explained in the

language in which they would be trained. For the approximate calculation problems,

subjects were asked not to compute the answer exactly and then choose the response

closest to it, but rather to estimate the answer directly. Because training sessions

were short (about 20 min), subjects were given two sessions per day separated by a

10 min break. Each test session lasted about 45 min.

3.2. Results

3.2.1. Addition training

Fig. 3 presents the mean response latencies and the error rates for each of the

addition tasks, languages, and sessions. Subjects performed faster and more accu-

rately on the second day of training, showing improvements for both addition tasks

in both languages. A 2 (task: exact versus approximate addition) £ 2 (language:
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Russian versus English) £ 2 (session) ANOVA on the response latencies revealed

only a main effect of session (F�1; 4� � 297:2, P , 0:001), and an interaction of

session with task (F�1; 4� � 8:1, P , 0:05). Improvement in performance was

greater for the approximate addition task than for the exact addition task.

3.2.2. Addition testing

Fig. 4 (left) presents the mean response latencies and the error rates for the trained

addition problems tested in both languages. Subjects who were trained on exact

addition problems performed faster when they were tested on those problems in the

language of training, regardless of whether that language was Russian or English. In

contrast, subjects trained on approximate addition problems answered those

problems with nearly equal speed in the trained and untrained languages. This

difference was not attributable to a speed±accuracy trade-off, because accuracy

rates were high and slightly favored the language of training for both exact and

approximate problems. The latency ®ndings were con®rmed by a 2 (task: exact
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versus approximate addition) £ 2 (training language: Russian versus English) £ 2

(language change: test in trained versus untrained language) ANOVA which

revealed a main effect of language change (F�1; 4� � 19:8, P , 0:025), quali®ed

by an interaction between task and language change (F�1; 4� � 22:0, P , 0:01).

Subjects performed better when tested in the language of training for the exact

addition problems but not for the approximate addition problems.

Fig. 4 (right) presents subjects' responses on the new exact and approximate

addition problems, both in the language of training and in the untrained language.

A comparison of the solid bars on the left and right sides of Fig. 4 indicates that

subjects trained at approximate addition answered old and new problems with equal

speed in the trained language, whereas those trained at exact addition answered old

problems more rapidly than new problems in that language. Responses on old

problems were more accurate in both conditions. These effects were analyzed ®rst

by a 2 (task) £ 2 (training language) £ 2 (problem novelty: old versus new problem)
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ANOVA on response latencies for test problems performed in the language of

training. The analysis revealed a main effect of problem novelty (F�1; 4� � 9:9,

P , 0:05) and a borderline-signi®cant interaction of problem novelty with task

(F�1; 4� � 7:6, P � 0:051). When tested in the language of training, subjects

responded faster when solving old than new exact addition problems, but they

responded with equal speed when solving old and new approximate addition

problems.

Inspection of Fig. 4 suggests two further effects in Experiment 2, parallel to those

from Experiment 1. First, subjects appeared to perform better on exact untrained

problems when tested in the language in which they had learned similar problems

(i.e. other exact addition problems) than when tested in the language in which they

had learned different problems (i.e. approximate multiplication problems); no such

effect appeared for performance on approximate untrained problems. This pattern,

however, was found not to be signi®cant. A 2 (task) £ 2 (training language) £ 2

(language change) ANOVA on response latencies for novel test problems revealed

no signi®cant main effects or interactions (all P . 0:10). Second, subjects appeared

to perform better on old than on new problems when tested in the untrained

language. A 2 (task) £ 2 (training language) £ 2 (problem novelty) ANOVA on

response latencies for test problems performed in the untrained language revealed

a main effect of task (F�1; 4� � 11:8, P , 0:05), quali®ed by an interaction between

task and problem novelty (F�1; 4� � 7:8, P , 0:05). In the untrained language, old

exact addition problems were answered faster than new exact addition problems,

whereas old and new approximate addition problems were answered with equal

speed.

3.3. Results: multiplication tasks

3.3.1. Training sessions

Fig. 5 presents the mean response latencies and error rates for the exact versus

approximate multiplication tasks in each language and session. Speed and accuracy

improved from the ®rst to the second session for both tasks and both languages,

although performance was faster initially for the approximate problems and the

improvement appeared to be steeper for the exact problems. These effects were

con®rmed by a 2 (task: exact versus approximate multiplication) £ 2 (language of

training) £ 2 (session) ANOVA which revealed signi®cant main effects of session

(F�1; 4� � 164, P , 0:001) and task (F�1; 4� � 14:1, P , 0:025), and an interaction

of these factors (F�1; 4� � 13:3, P , 0:025).

3.3.2. Testing sessions

Fig. 6 present the response latencies and error rates for the trained and untrained

multiplication problems in both the trained and the untrained languages. For both

trained and untrained problems, subjects performed better on approximate than on

exact problems and they performed better in the language of training than in the

untrained language. A 2 (task: exact versus approximate multiplication) £ 2

(language of training: Russian versus English) £ 2 (language change: same versus
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different) £ 2 (problem novelty: trained versus untrained) ANOVA revealed main

effects of task (F�1; 4� � 65:16, P , 0:001) and language change (F�1; 4� � 12:14,

P , 0:05). There was no interaction of task by language change (F , 1). Exact

multiplication showed no greater language dependence than approximate multipli-

cation. In general, performance on the multiplication task showed greater variability

than the addition task. The trend toward better performance on trained than on

untrained problems was not signi®cant in the above analysis (F�1; 4� � 2:21,

P . 0:2), and the effect of language change was not signi®cant when the data

from the trained problems and untrained problems were analyzed separately

(F � 2:05 and 2.15, respectively, P , 0:2). In addition, performance on the approx-

imate multiplication tasks showed high error rates, complicating interpretation of

the latency data.

3.4. Discussion

The principal ®ndings of Experiment 2 con®rm and extend those of Experiment 1.
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When bilingual subjects learned the exact answers to new large number addition

facts in one of their two languages, they subsequently retrieved those facts more

effectively in the language of training than in the untrained language. This replica-

tion of Experiment 1 adds to the evidence for language speci®city in arithmetic

learning with large, exact numbers.

In contrast, bilingual subjects who learned the approximate answers to the same

large number addition facts in one language subsequently retrieved those facts with

equal speed and accuracy, regardless of the language in which they were queried.

This ®nding provides evidence that facts involving large, approximate numerosities

are stored and manipulated in language-independent representations. The critical
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difference between language-dependent and language-independent arithmetic tasks

stems not from the nature of the operations performed (unary versus binary) or from

the range of the numbers in the answers (small versus large) but from the nature of

the number representations required. Representations of approximate numerosity

are independent of language, whereas representations of exact numerosity are

language-speci®c.

Experiment 2 also replicated the other principal ®nding of Experiment 1. Learn-

ing new addition facts involving exact large numbers did not generalize to other

similar facts, but learning new addition facts involving approximate large numbers

did generalize to new problems involving numbers within the same range. Experi-

ment 2 therefore provides further evidence that learning new facts about approx-

imate numerosities invokes representations of those numerosities as `blurs' on the

number line, allowing generalization to neighboring numerosities. In contrast, learn-

ing new facts about exact numerosities invokes different representations that do not

privilege connections among neighboring numbers.

One may ask whether the different patterns of generalization observed for exact

versus approximate arithmetic tasks stem from differences in subjects' learning and

memory strategies rather than from differences in their number representations.

Perhaps subjects who perform exact arithmetic come to store and retrieve the

answers to the problems they solve, whereas subjects who perform approximate

arithmetic compute the answer anew every time a problem is presented. If subjects

failed to store or retrieve the approximate answers to problems, then obviously they

would perform no better on trained problems than on new problems, and they would

show no language-of-training advantage. Subjects' equal performance on all

approximate problems in both languages therefore would not re¯ect true general-

ization but rather the absence of true learning.4

Subjects' performance in the training sessions provides evidence against this

alternative interpretation of their generalization performance. If subjects stored

exact but not approximate answers to the trained problems, then they should have

shown a greater bene®t from training on the exact problems than on the approximate

problems, i.e. a greater decrease in response times or error rates. In fact, the training

bene®t for the approximate problems was as large as that for the exact problems in

Experiment 1, and it was larger than for the exact problems in Experiment 2. These

®ndings provide evidence that subjects learned and retrieved as much or more

information about the approximate problems as about the exact problems. The

different patterns of language speci®city and problem speci®city observed on the

test re¯ect true generalization of learning, rather than the absence of learning. This

generalization, in turn, provides evidence for differences in the representations of

number used in exact versus approximate arithmetic tasks.

Like Experiment 1, Experiment 2 provided evidence that subjects solved old

exact large addition problems faster than new problems when tested in the untrained

as well as the trained language. Again, it is not clear whether subjects' performance

on old problems was fostered by rapid translation processes from the trained
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language or from an effect of training on language-independent representations. In

contrast to Experiment 1, subjects performed no better on novel exact large addition

problems when they were tested in a language in which they had learned similar

problems than when they were tested in a language in which they had learned

different problems. The absence of an effect of language change on novel exact

addition problems in Experiment 2 likely stems from the fact that in Experiment 2,

in contrast to Experiment 1, new addition problems did not share an addend with old

addition problems.

Finally, Experiment 2 provides little evidence for any language-independent

representation of multiplication facts. Performance in the language of training

exceeded performance in the untrained language, and this effect of language change

was no greater on the exact than on the approximate problems. These ®ndings

support Dehaene's (1997) thesis that non-verbal number representations are acces-

sible to the addition operation but not to multiplication. If subjects cannot solve

multiplication problems through a language-independent representation of approx-

imate numerosities, then their only possible strategy on the approximate multiplica-

tion tasks is to perform part of the multiplication problem exactly through the

language-dependent process. Performance may be faster overall on the approximate

than on the exact multiplication problems, because subjects do not need to complete

the full multiplication to choose the closer answer. The same language-dependent

representations of exact number nevertheless may underlie performance on both the

exact and the approximate multiplication problems. No strong conclusions about the

mental representation of multiplication facts can be drawn from the present experi-

ment, however, because of the high variability and high error rates shown in the

multiplication tasks.

In summary, Experiments 1 and 2 suggest that exact number representations are

language-dependent and approximate number representations are language-inde-

pendent across a variety of tasks. Nevertheless, all the tasks tested in these experi-

ments involved arithmetic calculation of some kind. The ®nal experiment

investigated whether bilingual students develop language-dependent representations

of large, exact numbers when they learn material outside any arithmetic context:

simulated lessons in history and geography.

4. Experiment 3

The idea for these experiments began when the ®rst author discovered that she

could readily provide American friends with her summer address in France but not

with her telephone number. Retrieving the number required that she say it in (non-

native) French, visualize the numerals, and then mentally read them off in English.

Pursuing the anecdote, she discovered that her (American) children could tell her

rapidly, in English, the occasion of France's independence day (`the taking of the

Bastille') but not its date (`July¼err¼le quatorze juillet!'). Are exact numbers

always stored in a language-dependent form, even when they do not appear in
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arithmetic expressions? Our ®nal bilingual training study begins to address this

question.

In this study, Russian±English bilingual students learned a ®ctitious history lesson

in one of their languages and a ®ctitious geography lesson in the other language.

Over the course of three training sessions for each lesson, subjects learned and were

tested on material involving large numbers and material involving non-numerical

information. For example, one lesson speci®ed that `Almost four hundred thirty

years ago in a country known as Kapnopa, a band of farmers met in a secret,

underground cave below the marketplace', and subjects were asked both when the

farmers met (alternative answers: 430 versus 480 years ago) and where they met

(alternative answers: in a cave versus in a house). The primary purpose of Experi-

ment 3 was to test whether subjects learned the numerical and non-numerical mate-

rial in a language-speci®c or language-independent manner. To this end, subjects

were subsequently tested, during one session in Russian and one session in English,

on both numerical and non-numerical material in both stories, so as to compare their

speed and accuracy of responding in the language of training and in the untrained

language.

Experiment 3 also tested further whether approximate numerical information is

stored independently of language when subjects deliberately attempt to learn both

numerical and non-numerical information exactly. If language-independent, approx-

imate number representations form automatically during explicit learning of exact

numerical facts, then new facts about exact numbers that are very small (below 5)

should be equally accessible to them in the language of training and in the untrained

language.

To test this prediction, a small set of facts containing the ordinal numbers between

1 and 4 (e.g. `the second election') and containing simple fractions (e.g. `three-

fourths of all recorded ancient legends') was embedded in the lessons and tested in

both languages. Because the discriminability of approximate numerosity is propor-

tional to set size, in accord with Weber's Law (see Gallistel, 1990), we reasoned that

language-independent, approximate number representations should be suf®cient to

capture these small numerosities exactly. If subjects automatically formed language-

independent, approximate number representations of these facts, therefore,

responses to these questions should have been equally fast and accurate in the

trained and untrained languages.

The ®nal purpose of Experiment 3 was to begin to probe whether other cate-

gories of information, besides exact number, are storied in a language-speci®c or

language-independent manner. It has been proposed that humans form language-

dependent representations of egocentric spatial directions (Hermer & Spelke, 1996;

Hermer-Vazquez, Spelke, & Katsnelson, 1999), geocentric spatial directions

(Levinson, 1996), and time (Peacocke, 1992). As a preliminary test of these

proposals, small amounts of information in each of these categories were included

in each story, and small numbers of questions assessing memory for this informa-

tion were presented during the test, both in the language of training and in the

untrained language.
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4.1. Method

The method was the same as in Experiments 1 and 2, except as follows.

4.1.1. Subjects

The participants were six female and two male bilingual speakers of Russian and

English, ranging in age from 19 to 33 years (mean 24 years). One additional subject

was dropped from the study when the screening test revealed poor English compre-

hension (see below). All the retained subjects were undergraduate or graduate

students living in the greater Boston, MA area and were solicited through an ethnic

club at MIT and through posted ads on the campuses of MIT and neighboring

universities. The mean age at which subjects started learning English was 16

years (range 13±18 years), and the mean time since coming to the US was 5 years

(range 3±7 years). All subjects were perceived by the experimenter to speak and

comprehend Russian and English with ease.

4.1.2. Materials

Training was conducted with written lessons printed single-spaced on two pages

of 8.5 £ 11 inch paper, with a count of 3712 characters, 623 words and 52 lines for

the history lesson in English, 3262 characters, 528 words and 75 lines for the history

lesson in Russian, 4480 characters, 769 words and 60 lines for the geography lesson

in English, and 3763 characters, 677 words and 85 lines for the geography lesson in

Russian. The lessons were printed in English in Times font size 14, and they were

printed in Russian in Times Ten Cyrillic font of the same point size, equating the

presentation of words on a page across the two languages. The history lesson offered

an overview of past events in a ®ctitious country; the geography lesson detailed the

travels and adventures of a ®ctitious character. In both lessons, numbers were

written out as words in the appropriate language, rather than as Arabic digits.

All testing of comprehension and retention took place on a Power PC Macintosh

computer with a 17 inch screen. Each question was presented on the monitor with a

picture size of 512 £ 600 pixels. For the training and testing in English, one question

appeared on the display in Times font size 48, and two answers appeared below it in

Times font size 28. For the stimuli in Russian, questions and answers appeared in

Adobe Times Ten Cyrillic in the same point sizes as for the English materials.

For each of the lessons, questions probed subjects' comprehension and memory

for information in six categories as follows (see Appendix A for examples):

(1) Exact large numbers: subjects were asked about 16 large number facts in each

lesson, such as the age of a character, the duration of an event, or the length of a

journey. Half of the facts used numbers that also appeared in the other lesson in a

different context (`bilingually-trained numbers'), and half used numbers appearing

only in a single lesson (`monolingually-trained numbers'). The tested numbers

ranged from 8 to 1993 for the history story and from 6 to 1873 for the geography

story. For half the questions presented, the distractor answer was a number that also

appeared in the lesson; for the remaining questions, the distractor answer did not
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appear in the lesson. The distractor always differed from the correct answer in either

the units or the tens place by any amount between 1 and 9.

(2) Object categories: subjects were asked 16 questions involving no numbers,

whose answers were the names of common objects. For half of the questions in each

lesson, the correct answer and distractor also appeared as the two alternative answers

for a question in the other lesson (`bilingually-trained words'); for the remaining

questions, answers appeared only in one lesson. For half the questions, the distrac-

tors were words drawn from the same lesson; for the remaining questions, the

distractors were words that did not appear in that lesson.

(3) Exact small numbers: subjects were asked about four facts involving fractions

with a numerator and a denominator under 5 and four facts involving the ®rst four

ordinal numbers, for a total of eight small number questions. All distractors were

chosen from the same set of fractions and ordinal numbers as the correct answers,

and all answers appeared in both lessons.

(4) Spatial relations: subjects were asked 12 questions probing the retention of

information concerning spatial directions. Six questions probed the learning of

egocentric directions, with the candidate answers of `left', `right', `back', `front',

`beside' and `behind'. Four questions probed the learning of geocentric directions,

with the candidate answers of `west', `east', `south' and `north'. The remaining two

questions (with the candidate answers of `above' and `below') could represent either

egocentric or geocentric spatial directions. Distractors were drawn from the same set

of spatial terms as the correct answers. All candidate answers appeared in both

lessons.

(5) Times of day and year: subjects were asked questions concerning the time of

day (e.g. `mid-morning') or the season of the year (e.g. `winter') when a target event

took place. For the four time of day questions, distractor terms did not appear in

either lesson; for the four season questions, distractors appeared in the same lesson.

The same terms were queried in both lessons.

(6) Proper names: six questions concerning the names of characters and land-

marks were used as ®llers for each lesson and were not analyzed. None of the

queried names appeared in more than one lesson; all distractors were names that

appeared in the same lesson.

Before the study, subjects were given comprehension tests in Russian and

English. Subjects ®rst were required to name 61 pictures drawn from the categories

of common fruits and vegetables, spatial terms, animals, precious stones, and

miscellaneous items. Subjects next completed a written questionnaire consisting

of simple short answer questions probing knowledge of spatial terms (e.g. `what

is the opposite of `near'?'), of the names of times and seasons (e.g. `April occurs in

what season?'), and miscellaneous items. Included in the picture naming task and

the written questionnaire were all the terms that would serve as answers and distrac-

tors during the training and test sessions. In order not to focus subjects' attention on

the terms to be tested, tests of the critical terms were interspersed with a variety of

other items. All subjects except one (who was dropped from the experiment for

failure to name the precious stones in English) correctly named all the key target

items in both languages.
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4.1.3. Design

Each subject was given three training sessions and one test session in each of their

languages, with Russian and English sessions occurring in alternation. The order of

languages and the pairing of languages with lessons were orthogonally counter-

balanced across sessions. During each session, subjects studied one lesson and

answered 12 questions. Over the course of the training sessions, subjects encoun-

tered a total of 36 different questions per lesson, of which eight tested large number

knowledge, eight tested non-numerical knowledge, four tested small number knowl-

edge, six tested spatial knowledge, four tested temporal knowledge, and six were

®llers.

The sequence and types of questions presented during a particular training session

were predetermined by the experimenter and ®xed for all subjects. The only rando-

mization allowed was the presentation order of ®rst and second questions after each

reading of the lesson.

After training, subjects received one test session in each language. Each test

session consisted of 60 questions from the history lesson and 60 questions from

the geography lesson. Each set of 60 questions consisted of 16 questions testing

large number knowledge, 16 questions testing non-numerical knowledge, eight

questions testing small number knowledge, 12 questions testing spatial knowledge,

and eight questions testing temporal knowledge. Half the questions from each cate-

gory for each lesson had been presented during training (`old questions') and half

had never previously been presented. Each question was asked twice, for a total of

240 questions/session.

4.1.4. Procedure

At the start of each training session, subjects were given general instructions in

the language to be used for that session, and then they were presented with one

lesson. The lesson was read twice aloud by the subject, twice aloud by the experi-

menter, and twice silently by the subject, for a total of six readings/session. Each

reading of the lesson was followed by two questions (presented in random order),

which were drawn in a predetermined order from the six categories, for a total of 12

questions during the session. Questions were presented on the computer, following

the same procedure as for Experiments 1 and 2. Breaks were taken after the ®rst

three readings of the lesson. At the start of each test session, subjects were told, in

the language appropriate for that session, that they would be reading and answering

questions about both of the lessons that they had studied. Subjects were not given the

lessons to read again. Instead, they were given the 60 test questions in random order,

followed by a repeat of the same 60 questions in a different random order. Breaks

were taken after every set of 30 questions.

4.2. Results

4.2.1. Training sessions

Fig. 7 presents the mean reaction times and error rates for questions on the lessons

presented in each language and on each of the days of training. Accuracy increased
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and latency declined from day 1 to day 3 for the questions in both languages;

performance was similar for the two languages and the two lessons. A 2 (lesson:

history versus geography) £ 2 (training language: Russian versus English) £ 3

(training day) ANOVA on the response latencies revealed only a main effect of

training day (F�2; 6� � 107:9, P , 0:001). A Tukey test indicated that the subjects

performed faster on day 3 than on days 1 or 2, and faster on day 2 than on day 1 (all

P , 0:01).

4.2.2. Testing sessions

Fig. 8 presents the mean reaction times and error rates for the large number fact

questions and for the non-numerical questions, both in the language of training and

in the untrained language. For the large number facts, subjects answered more

rapidly in the language of training than in the untrained language, regardless of
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whether the training language was Russian or English. For the non-numerical facts,

subjects answered with equal speed in the language of training and in the untrained

language. Accuracy was high in all conditions.

These effects were con®rmed by a 2 (fact type: numerical versus non-

numerical) £ 2 (language of training: Russian versus English) £ 2 (problem novelty:
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question asked during training versus not asked) £ 2 (language change: same versus

different) ANOVA on response latencies. The analysis revealed main effects of fact

type (F�1; 7� � 236:82, P , 0:001) and language change (F�1; 7� � 154:84,

P , 0:001), and a signi®cant interaction between these factors (F�1; 7� � 17:46,

P , 0:005). The only other signi®cant effects in the analysis were an interaction

of language of training and language change (F�1; 7� � 9:82, P , 0:02), and an

interaction of those two factors with task (F�1; 7� � 5:90, P , 0:05). The latter

interactions re¯ect subjects' tendency to respond faster when tested in Russian,

especially after training in Russian and especially for numerical questions.

Next we consider subjects' memory for material involving small numbers. Fig. 8

presents the mean response latencies and error rates for the set of questions testing

for information about simple fractions and small ordinal numbers (not included in

the category of numerical questions analyzed above). Both sets of questions yielded

the same two ®ndings. First, subjects performed faster in Russian than in English.

Second, in each test language (Russian or English), subjects performed faster and

somewhat more accurately if they were trained on the problems in that language

than if they were trained on the problems in their other language. Because the

superiority of performance in Russian was slightly greater than the superiority of

performance in the trained language, performance on material learned in English

was slightly faster during testing in Russian than during testing in English. Accuracy

was as high or higher during testing in the training language, indicating no speed±

accuracy trade-off. A 2 (fact type: fractions versus ordinals) £ 2 (language of

training) £ 2 (question novelty) £ 2 (language change) ANOVA on the response

times revealed only a main effect of language change (F�1; 7� � 12:28,

P , 0:01), and an interaction of language change by language of training

(F�1; 7� � 13:30, P , 0:01), re¯ecting the above two effects.

Finally, Fig. 8 presents subjects' performance on questions testing their memory

for spatial and temporal information within the lessons. Both categories of ques-

tions showed the same two effects as did the small number questions: faster

responding in Russian than in English and faster responding, in each test language,

after training in the same language. Again, the bene®t from testing in Russian was

slightly greater than the bene®t from testing in the trained language, and so

subjects performed slightly better on the material learned in English when tested

in Russian than when tested in English. For the spatial questions, the language-of-

training advantage is not attributable to a speed±accuracy trade-off, because accu-

racy was as high or higher for problems in the trained language. For the temporal

questions, accuracy was slightly higher for problems in the untrained language,

complicating the interpretation of the latency differences. The 2 (fact type: spatial

versus temporal) £ 2 (language of training) £ 2 (language change) ANOVA

revealed a signi®cant main effect of language change (F�1; 7� � 14:45,

P , 0:01), complicated by interactions of language change with fact type

(F�1; 7� � 5:81, P , 0:05) and with language of training (F�1; 7� � 6:73,

P , 0:05). The effect of language change was greater for the spatial facts and

after training in Russian.
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4.3. Discussion

Bilingual subjects who learned new numerical facts in the context of a ®ctitious

history or geography lesson subsequently retrieved those facts with greater speed

and accuracy in the language of training than in the untrained language. In contrast,

non-numerical facts about categories of objects, learned during the same lessons,

were subsequently retrieved with equal ease in the two languages.

These ®ndings provide the ®rst systematic evidence, we believe, that large

number representations are language-speci®c even in contexts having nothing to

do with mathematics. Together with Experiments 1 and 2, these ®ndings suggest that

representations of exact large numbers have a language-dependent component

whenever they are learned.

Although representations of large numbers were found to depend on language,

subjects nevertheless managed to use these representations to answer questions in

their untrained language. In contrast to Experiments 1 and 2, this feat could not be

accomplished in Experiment 3 without using information provided during the train-

ing sessions in the other language. The fact that subjects did retrieve the correct

answers with quite high accuracy in the untrained language provides evidence that

transfer of training occurred across languages. It is possible that subjects answered

questions in the untrained language by retrieving the information in the trained

language and then translating between their two languages. Alternatively, subjects

may have formed both language-dependent and language-independent representa-

tions of the numerical material during the learning phase, using the former informa-

tion more quickly at test.

Experiment 3 also provided evidence for language-speci®c representations of

small ordinal and fractional numbers. After subjects learned new facts about simple

fractions and ordinals involving only numbers below 5, they subsequently retrieved

those facts more effectively in the language of training than in the untrained

language. These ®ndings were not predicted from the thesis that humans have a

language-independent representation of approximate numerosity that operates in

accord with Weber's Law, because such a representation should have been suf®cient

to distinguish exactly between numerosities of 4 and below.

This unpredicted ®nding might be explained in three different ways. First,

subjects indeed may have a language-independent representation of number that

accords with Weber's Law and serves to distinguish small numerosities exactly,

but they may fail to use it in Experiment 3 because of a feature of the design of that

study. In Experiment 3, subjects learned facts about large and small numbers within

the same stories, and they were tested on both kinds of number facts within the same

block of trials. In Experiments 1 and 2, in contrast, subjects always were presented

with exact and approximate number problems in separate, blocked trials. If subjects

adopt a single encoding strategy for answering all numerical questions within a

single test block, then only a language-dependent, exact number strategy would

have been effective in Experiment 3. Second, subjects may have a language-inde-

pendent representation of exact small cardinal numbers, but they may lack such a

representation of fractions and ordinal numbers. Although human infants and
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animals have been found to form language-independent representations of the cardi-

nal numbers `one' through `four', it is not known whether any animal forms

language-independent representations of fractional or ordinal numbers. Third, adults

who have learned arithmetic may engage language-dependent processing whenever

they encounter problems involving exact numbers, regardless of the size of those

numbers.

Whatever the causes of subjects' extensive language speci®city for numerical

information, the existence of language-speci®c learning may have implications

for learning in bilingual classrooms. When students learn real lessons in history,

geography, and other subjects, information about exact large numbers, fractions, and

ordinals often are interspersed. The present ®ndings suggest that such conditions

will favor the development of language-speci®c representations of number.

Finally, Experiment 3 provides preliminary information concerning bilingual

learning of information about space and time. When subjects learned new facts

about the time or place at which an event took place, their performance showed

two striking features. First, performance was better in their ®rst language ± Russian

± than in their second language. Second, performance in each language was better

after training in that language than after training in their other language. Although

subjects answered questions about space and time faster in Russian than in English,

they answered faster in English after training in English than after training in

Russian. These ®ndings agree with prior suggestions that humans encode informa-

tion about space and time in representations that depend, in part, on a speci®c natural

language (Hermer-Vazquez et al., 1999; Levinson, 1996).

5. General discussion

Three experiments provided evidence for language speci®city in bilingual learn-

ing about numbers. Russian±English bilinguals retrieved information about exact

numerosity faster when queried in the language in which they acquired the informa-

tion, both when they were tested for knowledge of arithmetic facts and when they

were tested for knowledge in other domains. The language-of-training advantage

cannot be attributed to differences in the speed of encoding and decoding processes,

for it occurred with bilingually-trained numbers as well as with monolingually-

trained numbers. It cannot be attributed to any habitual preference for processing

information in one language, because it occurred with training in English (subjects'

non-preferred language) as well as Russian. Finally, the language-of-training advan-

tage does not re¯ect a global effect of the input language on retrieval of all informa-

tion, because it was not observed when subjects learned and retrieved non-numerical

information or information about approximate numerosity. Rather, it appears that

information about exact large numerosity is stored in a language-speci®c form.

Although Russian±English bilinguals retrieved new arithmetic facts involving

approximate numerosities (in Experiments 1 and 2) and new facts involving infor-

mation about categories of objects and events (Experiment 3) with equal speed and

accuracy in both their languages, Experiment 3 suggests that language-speci®c
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learning may occur quite extensively. Preliminary ®ndings suggest that subjects

formed language-speci®c representations of space and time as well as number,

consistent with suggestions that uniquely human spatial and temporal concepts

are language-dependent (Hermer & Spelke, 1996; Hermer-Vazquez et al., 1999;

Levinson, 1996; Peacocke, 1992). Moreover, the participants in Experiment 3

showed a language-of-training advantage in answering questions about simple frac-

tions and ordinal numbers. In Experiment 3, subjects who learned ®ctitious history

and geography lessons therefore appeared to encode or retrieve a considerable

amount of information in a language-dependent form.

In closing, we discuss one practical question and one theoretical question raised

by this research. First, what might be the implications of the present ®ndings for

education, and especially for debates concerning the merits of bilingual education

for children? Second, what might be the role of language in human representations

of exact number?

5.1. Education

In many parts of the world, school classes include students from diverse language

backgrounds, and teachers face the task of preparing those students to function in a

non-native language environment. Are such children best served by instruction in

the language in which they will eventually function, by instruction in their native

language, or by instruction in both languages (a bilingual classroom)?

Although we can offer no conclusive answer to this question, we believe that

attempts to evaluate different educational strategies in multilingual environments

should consider three possibilities suggested by the present research. First, a speci-

®c, natural language may serve not only as a medium of input for learning but as a

medium of representation for learned information. Second, non-native speakers of

the classroom language may learn certain material presented in that language as

easily and effectively as native speakers. Third, the costs and bene®ts of learning in a

non-native language may not be uniform across the spectrum of things to be learned.

We consider each suggestion in turn.

The present research provides evidence that a speci®c natural language serves, in

part, as a medium of representation for new information about large, exact numbers.

If this conclusion applies to children in classrooms, it has some unsettling implica-

tions. First, a child who is told that `two plus two equals four' and that `deux et deux

font quatre' may need to learn two facts, not one. Children taught arithmetic in

bilingual classrooms therefore may face a larger learning task than those in mono-

lingual classrooms, not only in subjects such as reading but also in mathematics.

Moreover, a child who learns arithmetic in a monolingual, native language class-

room may be at a disadvantage if she is later transferred to a class taught in her

second language or if her arithmetic knowledge is tested in the second language,

even if she shows facility at the second language in other respects. Children whose

arithmetic instruction switches from one language to another literally may lack the

representations that allow direct solution of arithmetic problems in the second

language. To function in the new language environment, they may need to learn
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arithmetic anew or engage in time-consuming and potentially confusing translations

between their languages.

On the positive side, the present research suggests that some learning may be as

effective in a child's poorly mastered, second language as in her ®rst language. The

subjects in Experiments 1 and 2 were native speakers of Russian, had learned

arithmetic entirely in Russian, and strongly preferred to perform arithmetic calcula-

tions in Russian. Nevertheless, they learned new arithmetic facts as quickly and

effectively in English as in Russian. This ®nding raises questions about the prevalent

view that children learn better if taught in their native language. At least in the case

of arithmetic, children may not need great facility with a language in order to use

that language as a medium of representation.

The third suggestion concerning bilingual instruction is perhaps the most impor-

tant: the relative merits of monolingual versus bilingual instruction may vary

depending on the nature of the material to be learned. In particular, a child in a

bilingual classroom may be at a disadvantage in acquiring information concerning

large, exact numerosities but at no disadvantage in acquiring information about

approximate numerosity. Moreover, a child in a non-native language classroom

may be equally as able as native-speaking children to learn new facts of arithmetic,

but less able to learn new facts about spatial relations, temporal relations, or small

numbers. In the present experiments, bilingual subjects showed a language-of-train-

ing advantage for some of the facts they learned: exact addition facts and historical

and geographical facts involving large numbers. For other materials, subjects

showed a ®rst-language advantage. They learned new multiplication facts more

effectively in Russian in Experiment 2, and they learned facts about ordinal

numbers, fractions, and spatial and temporal relationships more effectively in

Russian in Experiment 3. For still other materials, subjects proved equally capable

of learning in either language and showed full transfer from one language to the

other. These ®ndings suggest that children may acquire a mix of language-depen-

dent and language-independent information in classroom settings, complicating the

evaluation of monolingual versus bilingual education.

A ®nal suggestion arising from the present ®ndings applies to children learning

mathematics in monolingual as well as bilingual classrooms. Our ®ndings suggest

that children may derive considerable bene®t from attempts to cultivate their

`number sense' (Dehaene, 1997) by teaching them arithmetic facts about approx-

imate numerosities. Although some number sense is present in animals and human

infants, it is clear from our studies that number sense can be enhanced. In two short

training sessions, the subjects in Experiments 1 and 2 learned new facts about

approximate numerosity. Moreover, learning approximate number facts generalized

to new problems involving untrained numbers, whereas learning exact number facts

did not. Efforts to develop children's number sense therefore may yield rapid and

quite general bene®ts.

All these suggestions are tentative, for they depend on the untested assumption

that learning by children in classroom settings depends on the same representations

and processes as learning by adults in laboratory settings. Given the increasing

prevalence of multilingual cultures and learning environments and the increasing
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concern over mathematics education, however, research investigating these sugges-

tions could be of considerable importance.

5.2. Language and thought

We close by considering why representations of exact large numerosity might

depend on a speci®c natural language. At ®rst glance, this ®nding seems highly

counterintuitive. Human knowledge of number appears to be quintessentially

abstract. The concept `seven' appears to transcend any of the particular sets of

seven entities that a person enumerates, the particular situations in which she

enumerates them, and (one would think) the particular language in which she

expresses this enumeration. However, our ®ndings suggest that `seven' is a

language-dependent concept, distinct from the Russian `sem', or the French

`sept'. Why might concepts like `seven' depend on a speci®c natural language?

Hints of an answer to this question come from research in a different domain, on

human and non-human representations of the positions of objects in the spatial

layout. Research by Cheng (1986) and Gallistel (1990) provides evidence that rats

represent the geometric structure of the environment, as well as non-geometric

properties of the environment such as odors, surface patterns, and surface brightness.

Nevertheless, these two types of representation are not readily combined. Rats fail to

conjoin information about space and objects so as to represent that one object bears a

particular geometric relation to another. Research by Hermer and Spelke (1994,

1996) provides evidence for similarly modular representations in very young chil-

dren. In contrast to these ®ndings, however, children begin to show evidence, in their

spatial behavior, of an ability to conjoin geometric and non-geometric information at

the age at which they begin to produce expressions such as `The toy is left of the

truck' (Hermer-Vazquez, 1997). Most strikingly, human adults who normally show

this ability appear temporarily to lose it and to form only separate geometric and

non-geometric representations like young children and rats when they engage in a

simultaneous verbal interference task (Hermer-Vazquez et al., 1999). The distinc-

tive spatial memory abilities of human adults and older children appear to depend in

part on language.

What is the nature of this dependence? Hermer-Vazquez (1997) and Spelke and

Tsivkin (in press) have suggested that language serves as a medium for conjoining

information from the separate, modular representations that humans share with other

animals. Speci®c natural languages serve this function because they have two prop-

erties not found in language-independent, modular representations. First, a natural

language is a domain-general medium of representation. It allows speakers to repre-

sent information about space, time, objects, colors, odors, people ± to a ®rst approx-

imation, any information that their domain-speci®c cognitive systems make explicit.

Second, a natural language is a compositional system. Once speakers have learned a

®nite set of terms and rules of combination, they can express inde®nitely many new

expressions with no further learning. In particular, children may learn expressions

such as `The door is left of the wall' by relating those expressions to the purely

geometric representations that preverbal children share with rats, and they may learn
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expressions such as `the doll' and `the blue truck' by relating those expressions to

language-independent representations of objects. The compositional principles of

their language would then allow them to form and understand expressions such as

`The doll is left of the blue truck', with no further learning. If no language-inde-

pendent system allows such combinations (as suggested by the research of Cheng

with rats, and by Hermer and colleagues with preverbal children and with adults

experiencing verbal interference), then such representations will be unique to

humans and will depend on the acquisition and use of a speci®c language.

This hypothesis could account for the language-of-training advantage for learning

about spatial relationships in Experiment 3, but can it explain why our bilingual

subjects formed language-dependent representations of number? Research with

animals and preverbal infants provides evidence for language-independent repre-

sentations of approximate numerosity (Gallistel, 1990), as did Experiments 1 and 2

in the present series. These representations are limited in precision, however, and

cannot capture the effects of adding just one object to a suf®ciently large array.

Research with animals and preverbal infants also provides evidence for language-

independent representations of exact numerosities for sets with four or fewer

members. For example, monkeys and infants form representations of discrete

objects that capture the distinction between one object and two objects and allow

computation of the effects of adding exactly one object to an array of objects (Hauser

et al., 1996; Wynn, 1992a; for discussion see Hauser & Carey, 1998), although some

of the properties of this system are currently under debate (see Scholl, in press).

Although small, exact numerosities could in principle be distinguished by the

large approximate number system (see Dehaene, 1997; Gallistel & Gelman, 1992),

studies of monkeys and human infants suggest that these representations are

constructed by two distinct systems (Carey & Spelke, in press; Hauser & Carey,

1998). First, infants and monkeys are able to perform additions on small numbers of

items that are occluded, but they fail to perform additions on large numbers of items

when the correct and incorrect numerosities differ by the same ratio. They can add

1 1 1 to yield 2 rather than 1 but fail to add 5 1 5 to yield 10 rather than 5

(Feigenson & Carey, 2000; Hauser et al., 2000). This ®nding and others (see

Carey & Spelke, in press) suggest that the large approximate system fails to repre-

sent each member of a set as a persisting individual. Second, research provides

evidence that infants represent the invariant cardinal values of large sets over

changes in continuous variables such as the sizes and spacing of individual elements

(Xu & Spelke, 2000) but fail to represent the cardinal values of small sets over the

same changes (Clear®eld & Mix, 1999; Feigenson, Carey, & Spelke, 1998; Xu,

2000). This ®nding and others (see Carey & Spelke, in press) suggest that the

small number system fails to represent a group of individuals explicitly as a set.

If infants and non-human primates are unable spontaneously to combine their small

and large number systems, therefore, they will be able to represent speci®c indivi-

duals and speci®c sets of non-individuated entities, but they will be unable to

represent speci®c sets of individuals.

We suggest that a natural language counting system allows humans to combine

these two distinct types of representation into a single, language-dependent repre-
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sentation of discrete, exact numerosity: a representation of sets of individuals whose

cardinality increases as new individuals are added to the set. The new, hybrid system

captures the bene®ts of both initial, language-independent systems and overcomes

the speci®c limits of each system. Like the exact small number system, it is discrete,

exact, and applies to persisting individuals; like the approximate large number

system, it serves to represent sets with no upper bound and with explicit cardinal

values. Because language serves to link the two types of representations that

compose this system, however, representations within this system depend on it.

Research on the development of understanding of number words and of verbal

counting suggests how the young child's initial representations may combine to

form distinctively human representations of number (Wynn, 1990, 1992b). When

children ®rst begin to produce the number words, they map these words only onto

the distinction between singular and plural: `one' refers to an individual, and `two',

`three', `six', and all other number words refer indiscriminately to a set larger than

one. At this stage, `one' may connect only to representations of individuals

constructed within the exact small number system, and the other number words

may connect only to representations of sets constructed by the approximate large

number system. As children experience the different number words in the same

quanti®er positions in sentences (Bloom & Wynn, 1997), they may come to connect

each number word to representations in both systems: representations of a set of

individuals. Moreover, as they use the number words in sequence in the counting

routine, they may come to appreciate that each word in the counting sequence picks

out a set with one more individual than the previous word. These developments

would complete the child's construction of the natural numbers.

The hypothesis that natural number concepts are constructed by combining two

numerical representations and that natural language serves as the medium for this

combination would account for the present ®ndings, but other accounts also are

possible. In particular, children may use number words to express number concepts

that are antecendently available (Bloom & Wynn, 1997), and adults may use number

words in arithmetic and other memory tasks because those words increase the

accessibility or ef®ciency of those number representations. As a further possibility,

children may use language to construct a system of number representation by

combining a single language-independent system with a set of concepts provided

by the language faculty itself: the concepts that provide the semantics of natural

language quanti®cation (Carey & Spelke, in press; Hurford, 1987). Further research

probing in greater depth how children learn number words, and how adults use them,

is needed to distinguish these possibilities.

All of the above views predict that small, exact numbers and large, approximate

numbers can be represented independently of language, and that only representa-

tions of exact large numerosities depend on a speci®c language with a counting

system. Part of this prediction was supported by Experiments 1 and 2. Learning new

facts about exact large numbers was found to be language-dependent, whereas

learning new facts about approximate large numbers was not. Experiment 3 partially

con®rmed this prediction as well, because subjects showed a language-of-training

advantage for numerical information and spatial information but not for information
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about object categories. Two ®ndings from Experiment 3, however, failed to agree

with this prediction. Subjects showed a language-of-training advantage when they

were asked about small, simple fractions and about ordinal numbers below 5.

Because the small numbers were presented as fractions or ordinals, it remains an

open question as to whether information about small cardinal numbers can be

learned and retained in a language-independent manner.

The present experiments suggest a general approach to questions about the

sources of uniquely human cognitive abilities. Compared to other mammals,

humans have very similar perceptual and action systems and very similar systems

for getting around in space, orienting in time, recognizing objects, and negotiating

social encounters. Nevertheless, humans' cognitive achievements far outpace those

of any other animal, especially in formal domains like mathematics. The ¯exibility

of human cognition is particularly striking. Although all animals look intelligent

when they solve problems for which their cognitive systems have evolved, humans

often act intelligently when they confront new problems of their own design. Such

intelligence, we suggest, stems in part from a strategy that humans use again and

again: we combine old concepts and procedures together to form new ones. Natural

language, our most striking combinatorial system, may provide one of the tools that

makes this strategy possible. Formal mathematics may be one of its richest and most

dramatic outcomes.
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Appendix A

A.1. Experiment 1: example problems with bilingually-trained responses

Add 54:

54 1 48 � 102 versus 92; 54 1 76 � 130 versus 140; 54 1 88 � 142 versus 152

Add 63:

63 1 39 � 102 versus 92; 63 1 67 � 130 versus 140; 63 1 79 � 142 versus 152

Add in base 6:

2 1 5 � 11 versus 21; 5 1 15 � 24 versus 34; 13 1 15 � 32 versus 33

Add in base 8:

4 1 5 � 11 versus 21; 6 1 16 � 24 versus 34; 27 1 3 � 32 versus 33

Cube root estimation:
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cube root of 29 < 3 versus 4; cube root of 65 < 4 versus 3; cube root of 120 < 5

versus 7

Base 2 log estimation:

log base 2 of 9 < 3 versus 4; log base 2 of 15 < 4 versus 3; log base 2 of 33 < 5

versus 7

A.2. Experiment 2: example problems with bilingually-trained responses

Exact addition:

34 1 71 � 105 versus 115; 86 1 26 � 112 versus 102; 49 1 79 � 128 versus

118

Approximate addition:

34 1 71 < 110 versus 80; 86 1 26 < 120 versus 90; 49 1 79 < 120 versus 150

Exact multiplication:

21 £ 5 � 105 versus 115; 28 £ 4 � 112 versus 102; 16 £ 8 � 128 versus 118

Approximate multiplication:

21 £ 5 < 110 versus 80; 28 £ 4 < 120 versus 90; 16 £ 8 < 120 versus 150

A.3. Experiment 3: example problems

Exact large numbers, history:

There were ___ elected governors in Kapnopa prior to the execution. (57 versus

58)

Governor Pelba predicted that it would be ___ days before the farmers would be

forced out of business. (20 versus 22)

How many times did the acrobat ¯ip? (12 versus 10)

Exact large numbers, geography:

On the stone, Mary discovered ___ lines of Peaken text. (57 versus 58)

When Mary started looking for the treasure, she was ___ years older than when

she ®rst encountered the Iuto River. (20 versus 22)

How many scattered reports of the discovery of treasure did Mary hear about? (12

versus 10)

Object categories, history:

The fruit vendors bought ___ and grapes from the Kapnopan farmers. (pears

versus strawberries)

Where did a band of farmers meet? (in a cave versus in a house)

The King's palace was encrusted with ___. (leaves versus ¯owers)

Object categories, geography:

On her journey, Mary encountered squirrels scurrying in wilted ®elds of ___.

(pears versus strawberries)

Where did Mary ®nd herself after collapsing suddenly? (in a cave versus in a

house)

After Mary resolved to hike to the Dossi River, she burst through the ___. (leaves

versus ¯owers)

Exact small numbers, history:

What part of the passage was manned by the King's soldiers? (2/3 versus 3/4)
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After which election in Kapnopa did the King execute some of the governors?

(®rst versus second)

The cluster of pearls featured on the crown was ___ of the King's collection of

pearls. (1/3 versus 1/4)

Exact small numbers, geography:

What part of all recorded ancient legends of the river did Mary document herself?

(2/3 versus 3/4)

Mary was swept away by the Iuto River when she approached it for the ___ time.

(®rst versus second)

The Pex welcomed ___ of the country's migrant birds. (1/3 versus 1/4)

Spatial directions, history:

On which side of the central palace were the guards at the watchtower? (to the

right versus to the left)

In which direction across Juja did the governors ¯ee? (north versus south)

Where was the crown's emerald in relation to the cluster of pearls? (above them

versus below them)

Spatial directions, geography:

After Mary thought she understood the legend of the nymphs, she proceeded to

her ___ upstream the Iuto. (right versus left)

In which direction in relation to the mountains did the Rivers Iuto and Dossi

extend? (north versus south)

Where was the map supposed to appear in relation to the nymphs? (above them

versus below them)

Time, history:

In which season was Independence Day in Kapnopa celebrated? (summer versus

spring)

Pelba and the farmers arrived at a plan by ___. (early morning versus late morn-

ing)

When did the execution of Kapnopan governors take place? (at night versus

during the day)

Time, geography:

When did the Pex welcome the country's migrant birds? (in the summer versus in

the spring)

Mary began looking for the treasure ___. (early in the morning versus in the late

morning)

When did Mary climb through the mountains of Nedu? (at night versus during the

day)
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