
On Learning New Primitives in the Language
of Thought: Reply to Rey
SUSAN CAREY

Abstract: A theory of conceptual development must provide an account of the innate
representational repertoire, must characterize how these initial representations differ from
the adult state, and must provide an account of the processes that transform the initial
into mature representations. In Carey, 2009 (The Origin of Concepts), I defend three
theses: 1) the initial state includes rich conceptual representations, 2) nonetheless, there
are radical discontinuities between early and later developing conceptual systems, 3)
Quinean bootstrapping is one learning mechanism that underlies the creation of new
representational resources, enabling such discontinuity. I also claim that the theory of
conceptual development developed in The Origin of Concepts addresses two of Fodor’s
challenges to cognitive science; namely, to show how learning could possibly lead to
an increase in expressive power and to defeat Mad Dog Nativism, the thesis that all
concepts lexicalized as mono-morphemic words are innate. A recent article by Georges
Rey (Mind & Language, 29.2, 2014) argues that my responses to Fodor’s challenges fail,
because, he says, I fail to distinguish concept possession from manifestation and I do not
confront Goodman’s new riddle of induction. My response is to show that, and how,
new primitives in a language of thought can be learned, that there are easy routes and
hard ones to doing so, and that characterizing the learning mechanisms involved is the
key to understanding both concept possession and constraints on induction.

Alone among animals, humans can ponder the causes and cures of pancreatic cancer
and global warming. How are we to account for the human capacity to create
concepts such as electron, cancer, infinity, galaxy, and democracy? Rightly, most attempts
to provide such an account center on specifying what makes concept attainment
possible, but the literature on concept development adds a second question. Why
is concept attainment (sometimes) so easy and what (sometimes) makes concept
attainment so hard? Easy: some new concepts are formed upon first encountering
a novel entity or hearing a new word in context (Carey, 1978). Hard: others
emerge only upon years of exposure, often involving concentrated study under
metaconceptual control, and are not achieved by many humans in spite of years of
explicit tutoring in school (Carey, 2009). As we will see, considering what underlies
this difference illuminates the nature of concept attainment.

A theory of conceptual learning must have three components. First, it must
characterize the innate representational repertoire—that is, the representations that
subsequent learning processes utilize. Second, it must describe how the initial
stock of representations differs from the adult conceptual system. Third, it must
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characterize the learning mechanisms that achieve the transformation of the initial
into the final state. The Origin of Concepts (henceforth TOOC) defends three theses.
With respect to the initial state, contrary to historically important thinkers such as
the British empiricists, Quine, and Piaget, as well as many contemporary scientists,
the innate stock of primitives is not limited to sensory, perceptual or sensory-
motor representations; rather, there are also rich innate conceptual representations
with contents such as object, agent, goal, cause, and approximate cardinal value of a
set of individuals (part of what makes the human conceptual repertoire possible).
With respect to developmental change, contrary to ‘continuity theorists’ such
as Fodor, Pinker, Rey and others, conceptual development involves qualitative
change, resulting in systems of representation that are more powerful than, and
sometimes incommensurable with, those from which they are built (part of what
makes attaining the human conceptual repertoire sometimes hard). With respect
to a learning mechanism that achieves conceptual discontinuity, I offer Quinean
bootstrapping (part of what makes attaining the human conceptual repertoire
possible.)

While the goal of TOOC was to explicate and defend these three theses I also
addressed Fodor’s (1975, 1980) two related challenges to cognitive science—first,
to show how learning can possibly result in increased expressive power, and to
defeat the conclusion that all or almost all mono-morphemic lexical concepts are
innate. The key to answering both of these challenges, as well as to understanding
conceptual discontinuities in general, is to show that, and how, new conceptual
primitives can be learned. Conceptual primitives are the building blocks of thought,
the bottom level terms that articulate mental propositions and otherwise enter into
inference.

Rey (2014) denies that the project is successful in meeting Fodor’s challenges.
Although I ultimately disagree, I appreciate many of the points Rey makes along
the way. Rey’s discussion brings into focus how the projects of understanding
conceptual development and understanding the nature of concepts, learning, and
the human mind are intertwined.

1. The Dialectic According to Rey

A kind of logical constructivism is at the heart of Fodor’s and Rey’s dialectic. They
take expressive power to be a function of innate primitives, and what can—in
principle if not in fact—be built from them using the resources of the logic available
to the learner. Thus, expressive power, Rey says, is a logical/semantic notion. So
long as learning mechanisms are characterized solely by the set of primitives and
the logical resources through which one composes new representations in terms of
primitives, clearly one cannot increase expressive power by learning (Fodor, 1980).

My response to this picture of learning and conceptual development is to argue
that learning mechanisms can create new primitives, new primitives that cannot
be defined in terms of antecedently existent primitives, and thus increase the
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expressive power of the conceptual system. In addition, my concern is with how
new primitives actually come into being; if there are processes that yield new
primitives that do not involve logical construction, then the question is whether
such processes actually underlie the emergence of any given representation.

Fodor’s (1975) second challenge to cognitive science is to defeat his argument
for Mad Dog Nativism, that is, to defeat the argument that virtually all of the over
500,000 mono-morphemic concepts lexicalized in the Oxford English Dictionary
are innate. Rey lays out Fodor’s argument as follows:

Premise 1: (CONFIRMATION) All learning is hypothesis confirmation.
Premise 2: (LOGICAL CONSTRUCTION) One can learn new concepts

only by creating and confirming hypotheses formulated in terms of logical
constructions from antecedently available primitive concepts.

Premise 3: (ATOMISM) Mono-morphemic cannot be analyzed as logical
constructions of other concepts primitive or otherwise. (Actually, Fodor
says ‘most’ mono-morphemic concepts cannot be so analyzed, but for
simplicity I will assume ‘all’ rather than ‘most’.)

Conclusion: (INNATENESS) In order to acquire a new mono-morphemic
concept, one would have to confirm hypotheses already containing the
mono-morpheme (i.e. already containing the concept to be learnt).
Therefore, no mono-morphemic concept can be learnt.

Rey rightly says that TOOC answers this challenge by giving reasons to deny
Premises 1 and 2, CONFIRMATION and LOGICAL CONSTRUCTION. My
basic strategy has been to provide several case studies of transitions between con-
ceptual systems in which the later one expresses concepts that are not logical
constructions from the earlier one (Carey, 1985, 2009; Smith, Carey, and Wiser,
1985; Wiser and Carey, 1983). Sometimes this is because of local incommensurabil-
ity, as in case studies of thermal concepts, biological concepts and electromagnetic
concepts in the history of science, or concepts of matter/weight/and density in
intuitive physics in childhood and the concepts of life and death in childhood).
Sometimes it is because of developments within mathematic representations that
increase expressive power without involving local incommensurability (as in case
studies of the origins of concepts of integers and rational number).1 TOOC then goes
on to analyze how Quinean bootstrapping plays a role in transitions of both types.

Rey argues that TOOC fails to answer Fodor’s challenge for two interrelated
reasons: it fails to distinguish between concept possession and concept manifestation,
and second, whenever Quinean bootstrapping involves inductive inference, it fails
to confront Goodman’s new riddle of induction. In response, I reply that Rey’s
assumptions about concept possession are empirically wrong, as they presuppose

1 The case study of the construction of the integers is the focus of Rey’s commentary. I will
discuss whether this episode of conceptual development truly involves a discontinuity, and an
increase of expressive power, when I turn to it in Sections 7 through 12 below.
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Fodor’s Premises 1 and 2, and that the explanatory goals of Quinean bootstrapping
do not require any consideration of the justification of induction.

As Rey explicates the distinction between possessed and manifest concepts, a
concept is manifest if it is currently available to support thought, learning, inference
and action. He notes, correctly, that relatively few of the 500,000 mono-morphemic
concepts lexicalized in English are manifested in the infant’s mind. A concept is
possessed if it has the potential to be manifest. This technical notion, ‘possession’, is
unproblematic, but empty. It has the consequence that even extreme anti-nativists
would have to agree that all concepts that are ever manifest are possessed at birth.
Nobody would ever deny that an actual manifest concept had the potential to be
the output of some developmental process. This is bizarre terminology, and for
this reason, psychologists to not talk about ‘concept possession’ with this meaning.
However, we do explore the possible outputs of the learning mechanisms we
investigate, and indeed, such exploration is an important part of characterizing them.
Rey then goes on to make unsupported (and often wildly misleading) assumptions
about concept possession. He assumes that possessed concepts constitute a innate
space of alternatives, laying in wait to become manifest, and that manifestation
consists in being logically constructed from these innately possessed concepts, or
that manifestation is some unspecified process through which an already existing
unmanifest but possessed innate concept becomes manifest and thus available for
thought. These are substantive claims, claims my research aims to address.

Rey argues that the distinction between manifest and possessed concepts
crucially matters to the Fodorian dialectic. He points out expressive power is a
semantic/logical issue (i.e. what concepts can be definitionally constructed, given
specific assumptions about innate primitives and innate logical machinery). As such,
he says, any data that provides information about which concepts are manifested at
any given time are simply irrelevant to the question of expressive power. Therefore,
the data in support of conceptual discontinuities in manifested concepts do not
provide evidence for increases in expressive power. Expressive power, Rey claims,
is properly seen as a question about concept possession, not concept manifestation.

Rey concludes with an ecumenical proposal that he fears will please neither me
nor Fodor. Paraphrasing and perhaps putting words into his mouth: the process of
coming to manifest a concept may be an intentional process worthy of psychological
research, may involve learning, may involve discontinuities (in manifest concepts),
may even sometimes require bootstrapping (Quinean or otherwise). That is,
bootstrapping may sometimes be part of the process through which possessed
concepts become manifest, but it does not and cannot yield representations that
are genuinely new.

2. Responding to Rey

Contrary to Rey, the only question of expressive power that makes any sense con-
cerns manifest concepts. I embrace the proposal that there is a worthy psychological
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project concerning the acquisition of manifest concepts, although, of course, I
think that bootstrapping provides us with new manifest conceptual primitives and
so increases in expressive power. The developmental primitives I study are those
we can find evidence for in the baby’s or animal’s behavior. They must be available
to support inference and action in order to be diagnosed, i.e. they must be manifest
(currently available for thought). Not only do I think there may be a project worthy
of psychological study here, the burden of my long book is to reveal the fruits so far
of this study. In what follows I argue that concept manifestation is where the debates
about expressive power, conceptual continuity/discontinuity, and induction actually
play out. That is, it is the expressive power of manifest concepts that concerns me.

To gain an initial appreciation of these points, consider Rey’s unproblematic, but
empty, characterization of possessed concepts. One possesses a concept if one could,
at the end of a process of development, end up using that concept in thought. One
manifests a concept if one can use it now. On this sense of possession there simply
is no debate whether seven or quark or democracy are innately possessed, for these do
arise at the end of some process of development. This cannot be what the debate
is about. The debate becomes substantive only in the face of actual proposals about
learning mechanisms and innate primitives (e.g. Fodor’s Premises 1 and 2). The
input to any given learning process (hypothesis testing or otherwise) consists of
manifest representations. If learning is hypothesis testing, it can only involve choice
between manifest concepts.

My project is to account for the acquisition of manifest mental representations.
Rather than being irrelevant to the question of expressive power, questions of
what the innate manifest primitives are, what the actual computational mechanisms
that constitute learning are, are central to the project of exploring expressive
power, in the logical/semantic sense. One can only explore the logical/semantic
expressive power of an innate conceptual system relative to proposals for actual
innate primitives and actual learning mechanisms.

Expressive power, as Rey is using the notion, is the set of concepts that could
be defined, using innate primitives and combinatorial machinery. This should be
stated: ‘innately manifest primitives and innately manifested combinatorial machinery’
for these are the representations and computational devices available for learning. At
this point in the dialectic Rey moves from the unproblematic, but empty, notion of
possession to his substantive views about the initial state. What the innate primitives
are and what the innate combinatorial machinery is are empirical questions about
innate representational machinery, and these questions about expressive power
concern innately manifested representations.

For any representational system we posit, we are committed to there being
answers to three questions. First, what is the format of the symbols in the system;
second, what determines their referents; and third, what is their computational
role in thought. A worked example in TOOC is the evolutionarily ancient system
of number representations in which the mental symbols are quantities (rates of
firing, or size of populations of neurons) that are linear or logarithmic functions of
the cardinal values of sets, which in turn are input into numerical computations
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such as number comparison, addition, subtraction, multiplication, division, ratio
calculations, probability calculations, and others (see Dehaene, 1997, for a book-
length treatment of this system of numerical representations). We can only explore
such systems with psychological methods that diagnose manifest representations.
The project of TOOC is understanding the representational resources available
as the child or adult interacts with the world, how these arise and change over
development. These representations are the ones available for hypothesis testing,
as input into further learning, and to play a computational role in thought. And it
is successive manifest conceptual systems one must analyze to establish qualitative
change.

In what follows I flesh out these points, bringing out what I consider to be the real
issues Rey raises concerning how TOOC attempts to answer Fodor’s challenges to
cognitive science. The real issues include a characterization of the nature of learning
(Fodor’s first premise), the unjustified acceptance of the logical construction model
as the only model of concept learning (Fodor’s second premise), the misleading
analogy of the totality of concepts ultimately attainable as a hypothesis space, the
characterization of how primitives arise (both in cases where this is easy and in
cases where this is hard), and the characterization of constraints of induction (and
learning more generally, in cases where learning does not involve induction).

I begin with the premises in Fodor’s argument that I deny. I first comment on
why these premises matter and I then show why they are wrong.

3. Premise 2. Logical Construction

TOOC is an extended argument against Premise 2 of Fodor’s argument: the view all
concepts must either be innate or definable from innate primitives through innate
logical combinatorial devices. The logical construction premise is widely adopted
within cognitive science. Dominant views of concept acquisition—the classical
view, prototype theory, exemplar theories, and internalist versions of the ‘theory-
theory’ or ‘knowledge views’—all presuppose it (Smith and Medin, 1981; Murphy,
2002; TOOC). On all these views, new concepts are composed from primitives
using logical/syntactic combinatorial devices: ‘barks and wags tail when happy
and . . . ’ for the prototype of a dog for example. The issue here is the nature and
origins of newly created concepts, not how they determine category membership
(necessary and sufficient conditions, probabilistically). The dominant theoretical
project within the field of lexical development in the 1970s was to attempt to
discover the lexical primitives in terms of which lexical items are defined, and to
study the intermediate hypotheses children entertain as they construct new concepts
from those primitives (see Carey, 1982, for a review and critique). There I called
this view ‘piece by piece construction’; Margolis and Laurence (2011) call it ‘the
building blocks model’. Here, I will call it ‘the logical construction model’, in
honor of Premise 2. In contrast, I argue (Carey, 1982, TOOC) that computational
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primitives need not be innate. They can be acquired through learning processes
that do not consist of logical construction from innate primitives.

As Rey points out in the end of his article, one central issue is atomism. If many of
the primitives in adult thought (e.g. lexical concepts like ‘dog’ or ‘cancer’), cannot
be defined in terms of innate concepts, then they either must be innate primitives or
it must be possible to learn primitives through some mechanism that does not consist
of defining new concepts by logical combination of antecedently available terms. I
accept Fodor’s doctrine that most lexical concepts are computational primitives.

Notice that the possibility of learning new primitives matters to the question of
expressive power of the system, in the logico/semantic sense. The expressive power
of a system of representations is a function of its atomic terms and combinatorial
apparatus. The logical connectives and operators (e.g. sentential operators, modals,
quantifiers) are not the only primitives that matter to expressive power. If ‘dog’
cannot be logically constructed from primitives, then acquiring a concept ‘dog’
increases expressive power of the system (see Weiskopf, 2007). That is, non-logical
primitives figure into semantic/logical expressive possibilities as well as do logical
ones. This is one reason that the question of whether one learns the concept dog is
so central to the debate between Fodor and his critics.

4. Premise 1. All Learning is Hypothesis Formulation and Testing

As Margolis and Laurence (2011) point out in a reply to Fodor’s 2008 book
(LOT2), a cursory examination of the variety of attested learning mechanisms in
the animal kingdom shows this generalization to be wildly off the mark. Rote
learning (memorizing a phone number), one-trial associational learning (e.g. the
Garcia effect, the creation of a food aversion as a result of becoming nauseous some
fixed time after having eaten a novel food: Garcia et al., 1955), and many other
types of learning do not involve choosing among multiple hypotheses, confirming
one of them. And as we shall see, such mechanisms have roles to play in creating
new conceptual primitives.

Of course, the claim that these are learning mechanisms depends upon what
one takes learning to be. Learning mechanisms share a few essential properties that
allow us to recognize clear examples when we encounter them. All learning results
in representational changes in response to inputs that can be seen (by the scientist)
to provide evidence relevant to the representational change. That is, learning is
a computational process, requiring inputs that can be conceptualized as providing
relevant information. Sometimes, as in the case of explicit or implicit hypothesis
testing, the organism itself evaluates the information in the input with respect to its
evidential status (as in all forms of Bayesian learning mechanisms). But other times,
the learning mechanism is a domain-specific adaptation that responds to information
by simply effecting a representational change of relevance to the organism—an
example being the learning mechanism that underlies the Garcia effect mentioned
above.

© 2014 John Wiley & Sons Ltd



140 S. Carey

5. The Relatively Easy Route to New Representational Primitives:
Domain Specific Learning Mechanisms

The issues concerning possession and manifestation, learning and acquisition, arise in
the case of any representation, conceptual or otherwise, that end up in the repertoire
of an animal. The literatures of psychology and ethology have described hundreds
of domain-specific learning mechanisms that simply compute new representations
from input, having arisen in the course of natural selection to do just that. Most of
these representations are not conceptual ones, but considering how they are acquired
shows that Fodor’s and Rey’s assumptions about learning do not hold in general.
These learning mechanisms do not involve hypothesis testing, and thus provide
counterexamples to Premise 1. They also do not implement logical construction
from primitives, and thus provide counterexamples to Premise 2. Considering how
they work illuminates why it’s a mistake to consider possessed representations (those
with the potential of becoming manifest) as a space of existent representations, ready
to be chosen among or built from in a process of manifestation.

TOOC’s example of an evolved domain-specific learning mechanism is that
which underlies Indigo Buntings’ learning which part of the night sky indicates
north. This matters crucially to Indigo Buntings, for they migrate over 3500 miles
each spring (north) and fall (south), and they navigate by the stars. Because the earth
tilts back and forth on its axis, what part of the night sky indicates north changes
radically on a 30,000 year cycle. Sometime not too far in the future, the North
Star will be Vega, not Polaris. Thus, it is unlikely that an innate representation of
Polaris as the North Star was created by natural selection, and indeed, Steven Emlen
(1975) discovered the learning mechanism through which Indigo Buntings create
the representation of north that will play such a crucial role in their migratory life.
The learning device that achieves this analyzes the center of rotation of the night
sky, and stores the configuration of stars that can allow the bird to recognize the
position of north from a static sighting (as it has to do every time it starts to fly
during its migrations in the spring and the fall, and as it monitors its course).

This mechanism computes what it is designed to compute—nothing more nor
nothing less. It creates an essential representation in the computational machinery
of Indigo Buntings, namely a symbol held in long-term memory that specifies
north in the night sky. Of course, there is a prepared computational role for this
representation, but the representation of north in the night sky must still be learned.
Domain specific learning mechanisms of this sort are often supported by dedicated
neural machinery that atrophies after its work is done, leading to critical periods.
This is such a case; if a bird is prevented from seeing the night sky as a nestling, no
amount of exposure to the rotating night sky later in life allows the bird to identify
north, and the bird perishes.

This example is worth dwelling upon with respect to the distinction between
possession and manifestation, whether possessed concepts should be thought of as
an existing space of hypotheses, and whether the mechanism involves hypothesis
formation and confirmation. Take possession versus manifestation first. Until the
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learning episode is completed, there is no manifest representation that specifies
what direction is north in the bird’s mind. However, this learning mechanism can
learn any of a very large number of star configurations constellations that could
indicate ‘north’. Indeed, part of the evidence that this is the learning mechanism
through which Indigo Buntings establish Polaris as the North Star are planetarium
experiments in which the night sky is made to rotate around an arbitrarily chosen
part of the night sky while the birds are nestlings. Indeed, the birds then use the
North Star so specified to set their course when it’s time to migrate. Thus, in the
potential sense of possession, there are a plethora of representations of ‘north’. And
clearly, one can investigate limits on the system (e.g. if stars were equally distributed
throughout the sky, or if they were too densely packed to be resolved, or if the
patterns of stars showed large scale repetitions, this couldn’t work.) This is how
one would explore the space of possessed representations in this system, in the
sense of possible representations it can achieve—the logical space of possibilities for
specifying an absolute direction by the celestial navigation system of actual Indigo
Buntings. But there is no positive characterization anywhere in the birds’ mind of
any of the possibilities (including Polaris). There are no possessed representations
that in any way exist in the Bunting neonate’s mind. Also we see that it is
only with an actual representational/computational characterization of this learning
mechanism that the logical space of the possessed concepts (in the sense of those it
is possible for the Bunting to learn) can be explored. Such is always the case.

What about hypothesis testing? I take the essential features of hypothesis testing
to be two: the learning mechanism must entertain alternatives, and choose among
them on the basis of evidence. In no way does Indigo Buntings’ acquiring a
representation of north consist of choosing among possibilities. The animal doesn’t
consider any other than the one that the output of the learning mechanism. Here,
calling the possible specifications of north a ‘hypothesis space’ is wildly misleading.

This case is also worth dwelling upon with respect to the other issues on the table.
Not only does this case not involve hypothesis formulation and testing, it also does
not involve building a new representation out of primitives by logical combination.
And since there is no induction involved, the issues of constraints on induction
do not arise. Of course, all learning mechanisms must be highly constrained to
be effective, and characterizing real learning mechanisms allows us to understand
the constraints under which they operate. This is a highly constrained learning
mechanism; it considers only some kinds of information to create a representation
that has only one computational role. It is of no use to the bird in helping the bird
learn what to eat, who to mate with, or where its nest is in a local environment.

Navigation is not a special case. There have been hundreds of such domain-
specific learning mechanisms detailed in the literatures of ethology and psychology,
including the imprinting mechanisms that allow infants (animals and humans) to
identify conspecifics in general and their caretakers in particular, mechanisms that
allow animals to learn what food to eat (the Garcia effect just one of dozens
of domain-specific learning mechanisms through which omnivores like rats and
humans achieve this feat), bird song learning, and so on (see Gallistel et al., 1991, for
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a review of four such domain-specific information-expectant learning mechanisms,
and Gallistel, 1990, for a nuanced discussion of the nature of learning).

In sum, the animal literature provides many examples of learning mechanisms
designed to form new computational primitives, learning mechanisms that implicate
neither logical construction from existing primitives (Premise 2), nor hypothesis
testing and confirmation (Premise 1). One can (and one does) explore the space
of possible outputs of these mechanisms, for this is one way they can be fully
characterized and their existence empirically tested, but in no way are the ‘possessed’
concepts laying in wait, existing ready to be manifested.

6. The Relatively Easy Route to New Conceptual Primitives

The learning mechanisms described above acquire new primitive representations,
but they are probably best thought of as new perceptual rather than conceptual
representations, as their computational role is sensori-motor. There are, however,
learning mechanisms that similarly respond to inputs of certain types by simply
creating new conceptual primitives, conceptual in the sense of representations used
in thought and reasoning. These domain-specific concept learning mechanisms
need not involve hypothesis testing, and do not involve constructing new concepts
by logical combination. Take the Block (1986)/Macnamara (1986)/Margolis (1998)
object-kind learning mechanism for example.2 This learning mechanism is triggered
by encountering a novel object (as specified by core cognition of objects) with
obviously non-arbitrary structure. As Prasada et al. (2002) showed, there are several
cues to non-arbitrary structure: the object has complex yet regular shape (e.g.
symmetries, repetition), or there are multiple objects that share a complex irregular
shape, or the object has functionally relevant parts, or the object recognizably falls
under an already represented superordinate kind (e.g. kind of agent, kind of animal,
kind of artifact). Core cognition contains perceptual input analyzers that are sensitive
to cues to each of these properties of individual objects. Encountering an individual
with one or more of these properties triggers establishing a new representational
primitive that can be glossed same basic level kind as that object. Reference to the kind
is ensured by representation of the surface properties of the individual or individuals
that occasioned the new concept (and these represented surface properties get
enriched and even overturned as bases of reference and categorization as more
is learned about the kind). The content of the new concept depends upon the

2 These writers discuss this mechanism as a natural kind learning mechanism (e.g. kinds of
animals), but I believe the domain of this mechanism is object kind representations (as opposed
to object properties, individual objects, or the events in which objects participate). Roughly,
kind representations are inductively deep, and kinds are construed in accordance with the
constraints that constitute psychological essentialism in Streven’s (2000) sense. Artifact kinds fall
under the domain of this mechanism as well as do natural kinds (Kelemen and Carey, 2007).
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referent, the conceptual role provided by the basic level kind schema (psychological
essentialism), and the conceptual roles provided by any superordinate kind schemas
that the individual is taken to fall under (e.g. agent, animal, artifact, these in turn
being constrained by their roles in different systems of core cognition or constructed
theories).

Consider encountering a kangaroo for the first time. Such an encounter might
lead to the formation of a concept kangaroo that represents animals that are the
same basic level kind as the newly encountered one. No enumerative induction
is needed; the concept is what Strevens (2012) calls ‘introjected’ into one’s set of
primitives. This concept, falling under psychological essentialism (as it is a kind
concept), reflects the many constraints on kind concepts. That is, the conceptual
role ‘same kind as’ includes assumptions that something causes the non-random
structure that triggered the formation of the new concept, that these underlying
causes are shared by all members of the kind (now, in the past, in the future), that
the surface properties that specify the individual that occasioned the new concept
may not hold for all members, possibly not even typical members. Furthermore,
the current guesses about the nature of the relevant causal mechanisms relevant to
the creation of members of this kind, to determining their properties, and to tracing
numerical identity though time, are taken to be open to revision. That is, there
is no definition that determines membership in the kind; learners treat everything
they represent about the kind up for revision (including, even that there IS a new
kind—the individual we encountered might have been a mutant raccoon).

This mechanism creates new primitives, not definable in terms of other manifest
concepts, and thus increases the expressive power of the conceptual system. The
concept kangaroo is not definable in terms of antecedently available primitives using
the combinatorial machinery of logic. Before creating this concept, one could not
think thoughts about kangaroos, just as before analyzing the center of rotation of
the night sky and storing a representation of north so specified, an Indigo Bunting
could not set or guide a course of flight according to toward north or away from
north. Of course the kind learning mechanism ensures that creating new primitives
for kinds is easy; one need only encounter an individual that one takes to be an
individual of a new kind, and store a representation of what that individual looks
like. But this process involves neither induction nor hypothesis testing among a
huge space of possessed but unmanifest concepts. The concept kangaroo was not
laying in wait in a system of representations available for selection by a Bayesian
hypothesis testing mechanism.

Rey discusses the Margolis kind learning module, claiming that it falls prey
to Goodman’s ‘grue’ problem, just as Quinean bootstrapping does (see below).
There are two answers to Rey’s questions regarding constraints on induction in the
Margolis kind learning module. First, as detailed above, there need be no induction.
But, Rey asks, why are not kinds such as ‘object’ ‘animal’, ‘agent’, subcategory
of kangaroo’, ‘kangadile’ (kangaroo until year 2040, thereafter crocodile), or
‘undetached kangaroo part’, on an infinitude of other concepts possible glosses of
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same kind as that object, rather than the kind ‘kangaroo’? Why does the learner not
form a concept of a particular individual (Oscar) instead of a kind?

Formulating the constraints that give a psychological explanation of why we
actually project predicates like ‘green’ over predicates like ‘grue’ are part of the
bread and butter research into cognitive development. In the case of dedicated
concept learning devices such as the object-kind learning device, the empirical
project is specifying the constraints under which the system operates. That is,
the empirical project is to provide a positive characterization of attested learning
mechanisms. That there is a dedicated kind concept acquisition device is an
empirical discovery, and, like all learning mechanisms this one embodies strong
constraints. It is a discovery that there is basic level in kind concepts, and it is a
discovery that basic level kinds are privileged in kind concept learning (e.g. Rosch
et al., 1976). It is a discovery that kind representations embody constraints derived
from causal/functional analyses (see the work on psychological essentialism and the
psychology of a causal/explanatory core to kind concepts (S. Gelman, 2003; Keil,
1989; Ahn and Kim, 2000; Lombrozo, 2009; Strevens, 2000). And the existence
and structure of systems of core cognition (agent, object), as well as innately supported
systems of causal and functional analysis, are empirical discoveries, as is the fact
that these constrain kind representations from early infancy (Carey, 2009). These
constraints do not rule out ever entertaining concepts such as animal, Oscar, puppy,
or kangadile. After all, some of them are themselves innately manifest (e.g. agent)
and are drawn upon as important parts of the constraints on the kind module. That
is, agent is the content of a superordinate kind that constrains a newly formed basic
level kind concept that falls under it. Other concepts of kinds of objects, such as
subordinate and superordinate kinds, as well as stage and phase sortals like puppy or
passenger, are routinely manifested after basic level kind representations are formed
(e.g. Hall and Waxman, 1993). Even outré concepts such as kangadile and undetached
kangaroo part are obviously entertainable (after all, Goodman and Quine did so, and
we all can join in). But these concepts simply are not the output of the dedicated
basic level kind learning device discussed above.

Furthermore, the basic level kind module is not the only early emerging
word learning mechanism. The child can also form a concept of the particular
individual, Oscar. The positive characterization of the learning mechanism that
yields representations of individuals is another story, one that has also been told
(e.g. Bélanger and Hall, 2006).

The basic level kind learning module creates new primitive concepts. Before a
person has formed the concepts kangaroo or shovel, or concepts of any of potentially
infinite new kinds, he or she cannot think thoughts about the entities that fall under
those concepts. This learning mechanism thus results in an increase in expressive
power. However, like the cases of the non-conceptual dedicated learning mecha-
nisms discussed above (those that yield representations of conspecifics, caretakers,
the north star), there is an innately specified conceptual role for kind concepts, in
this case given by the abstract concept kind of object (characterized by the schema of
psychological essentialism) and by the schemas of superordinate kinds embedded in
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core cognition and constructed theories that the learner assigns the new concepts to.
Such already existing schema and conceptual roles are always part of the relatively
easy route to new primitives.

7. The Relatively Hard Route to New Conceptual Primitives

Quinean Bootstrapping also creates new primitives, thus increasing the expressive
power of the conceptual system. It differs from those learning mechanisms described
above in that did not arise through natural selection to acquire representations of
a particular sort. Rather, it is one of the learning mechanisms that underlie
the creation of representational resources that are discontinuous with (in the
sense of being qualitatively different from, being locally incommensurable with, the
representations of the same domain that were their input). It creates new conceptual
roles, rather than merely creating new primitives for which there were prepared
conceptual roles (as in the case in the easy route to new primitives, see above). But
once created, these new conceptual roles provide constraints on the concepts that
will be learned, just as in the relatively easy route to new conceptual primitives.

TOOC takes a particular episode along the way to creating a representation of
integers as a central worked example of conceptual discontinuity and of Quinean
bootstrapping. This case study, the creation of the first representations of a small
subset of natural numbers, is discussed in Rey’s critique, so I use it here as well in
my reply to Rey. As the focus of Rey’s critique, he uses it to illustrate the supposed
pitfalls of failing to distinguish possession from manifestation, as well as of failing to
fully appreciate Goodman’s new riddle of induction.

Rey says, and I agree, that expressive power is a semantic/logical issue. Examples
of questions about expressive power relative to number representations include
whether arithmetic can be expressed in the machinery of sentential logic—provably
no—and whether arithmetic can be expressed in the machinery of quantifi-
cational logic plus the principle that 1–1 correspondence guarantees cardinal
equivalence—provably yes, if you accept Frege’s proof. As such, he claims that
any data that provides information about which concepts are manifested at any
given time are simply irrelevant to the question of expressive power. Rey claims
that expressive power is properly seen as a question about concept possession, not
concept manifestation. What Rey misses in this discussion is the exploration of
expressive power with such proofs is relevant to the question of how arithmetic
arises in development only against empirically supported proposals for what the
innate numerically relevant innate primitives are, and what form innate support for
logic takes. If arithmetic can be derived from the resources of logic alone (with no
numerical primitives), this is relevant to the question of the origin of arithmetic
in ontogenesis only if the relevant logical resources are innate, and in a form that
would support the relevant construction. If primitives with numerical content are
needed as well (e.g. the principle that 1–1 correspondence guarantees cardinal
equivalence, or the concepts one and the successor principle), then one must account
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for how these arise in development. TOOC provides evidence that these numerical
concepts are not part of the child’s innate endowment, and that they arise only
after the bootstrapping episode in which the numeral list representation of number
is constructed.

Nonetheless, Rey is correct that TOOC does not consider the form innate
support for logic takes, and how logical resources arise in development. Indeed,
I am acutely aware of this lacuna, and of its relevance to our understanding of
numerical development. These questions have been the focus of research in my
lab for the past four years, and will be so for the next decade at least. We do not
yet have answers concerning the form innate support for logic takes. My current
guess is that innate logic is largely implicit, embodied in computations, and that
bootstrapping is needed before children create the logical resources needed for the
mathematical construction of the integers from such primitives. After all, these
constructions did not arise in mathematics until after 2000 years of development of
formal logic. However, as I say below, my picture of the ontogenesis of concepts
of integers would be falsified by the discovery of manifest representations with
numerical content in addition to the three systems for which we already have
empirical support.

Thus, I acknowledge that it is conceivable that Rey could turn out to be right (not
that he provides a shred of evidence) that a full characterization of the initial state
will reveal expressive power sufficient to express arithmetic. If so, I would certainly
back away from my claims about this bootstrapping episode increasing expressive
power, saying that my studies concern how arithmetic capacities actually become
manifest in ontogenesis. After all, the latter is actually my concern. I am quite certain
that children do not construct arithmetic as Dedekind/Peano or Frege did, and I
favor my bootstrapping story about what children actually do. But, if numerical
or logical primitives are needed that themselves arise as a result of bootstrapping
processes, then my claims of increases in expressive power stand.

At any rate, the actual process through which representations of integers arise is
an existence proof of the possibility that bootstrapping can yield new primitives. The
case study of the ontogenetic origin of integer representations illustrates all three
major theses in TOOC: the existence of conceptual rich innate representations,
conceptual discontinuity, and Quinean bootstrapping.

8. Core Cognition of Number (Rich Innate Representational Resources;
TOOC, Chapter 4)3

Core cognition contains two systems of representation with numerical content:
parallel individuation of small sets of entities in working memory models, and

3 The evidence for central claims in TOOC, along with citations of relevant literature, can be
found in the chapters flagged throughout the current text.

© 2014 John Wiley & Sons Ltd



On Learning New Primitives in the Language of Thought: Reply to Rey 147

analog magnitude representations of number. Analog magnitude representations
were briefly sketched in Section 2 above. They are analog symbols that approx-
imately represent cardinal values of sets. One signature of this system of number
representation is that magnitudes are compared to one another on the basis of their
ratios, and thus discriminability accords with Weber’s law (discriminability is better
the smaller the absolute value of the quantity) and exhibits scalar variability (the
standard deviation of multiple estimates of a given quantity is a linear function of
the absolute value of that quantity.) Analog magnitude representations of number
have been demonstrated in many animals (rats, pigeons, non-human primates) as
well as in humans from neonates to adults.

Analog magnitude representations are the output of paradigmatic perceptual
input analyzers, but the analog magnitude symbols for number that are produced
are conceptual in the sense of having rich central conceptual roles, including the
many different arithmetical computations they enter into, and the fact that they
are bound to (quantify over) many types of individuals (objects, events, auditory
individuals).

A second system of core cognition with numerical content, parallel individuation,
consists of working memory representations of small sets of individuals (three
or fewer). The symbols in this system represent individuals (e.g. 3 crackers
is represented {cracker, cracker, cracker}, probably with iconic symbols for each
cracker. Unlike the analog magnitude number representation system, parallel
individuation/working memory is not a dedicated number representation system,
nor are there any symbols that represent cardinal values (or any other quantifiers)
in these models; there are only symbols for individuals. These models are used to
compute total volume and area of the individuals, and are input into spatial and
causal representations. The numerical content in the system of parallel individuation
is entirely implicit; the symbols in the models stand in 1-1 correspondence with
individuals in the sets modeled. This is ensured by computations sensitive to
spatiotemporal cues to numerical identity. The system must determine whether
a given individual is the same one or a different one from a previously viewed
individual to determine whether to add another symbol to the model. Further
implicit numerical content is embodied in some of the conceptual roles these models
enter into. More than one model can be entertained at any given time, and models
can be compared on the basis of 1-1 correspondence to establish numerical order
and equivalence. Importantly, this system of representation implicitly represents
one. There is no explicit symbol with the content one, but the system updates a
model of a set of one when a numerically distinct individual is added to it, yielding
a model of a set of two (and ditto for sets of two and three), and the system similarly
updates a model if individuals are removed from it. There is a strict upper limit to
the number of individuals that can be held in working memory at any given time:
3 for infants. This set-size limit on performance contrasts with the ratio limit on
performance that characterizes analog magnitude systems.

The parallel individuation system is perception-like in many ways, especially if
the symbols for individuals are indeed iconic, as I suspect. Nonetheless, the parallel
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individuation models themselves are conceptual in that they are held in a working
memory system that requires attention and executive function, and enter into many
further computations in support of rich central inferential processes (e.g. reasoning
about the actions of agents upon objects, functional analyses, causal analyses, as well
as quantitative computations).

Systems of core cognition are not the only innate resources relevant to conceptual
development. TOOC assumes also early linguistic resources, but makes no attempt
to specify their exact nature (a topic for another book). And, as commented above,
the nature of logical resources available to infants and toddlers is virtually unstudied.
Particularly relevant for number representations are linguistic representations that
underlie the meanings of natural language quantifiers. Number marking in language
(quantifiers, determiners, singular/plural morphology) requires representations of
sets and individuals, and provides explicit linguistic symbols with numerical content
‘a, all, some, most, many, few . . . ’. TOOC reviews evidence that before age 2
children have mastered some of the basic syntax and semantics of natural language
quantifiers, and that these linguistic structures provide important early constraints
on the meanings of verbal numerals, via syntactic bootstrapping. (Herein lies the
answer to Rey’s question of why numerals are not taken as proper names for sets;
by the time children are learning words for verbal numerals, they identify proper
nouns from syntactic context, and they have analyzed numerals as determiners or
quantifiers, which gets them into the right part of semantic space.)

9. Conceptual Discontinuity (TOOC, Chapter 8)

There are two steps to establishing discontinuities in development. The first, most
important, step is characterizing the nature and content of symbols in successive
systems of representation: Conceptual Systems 1 and 2 (CS1 and CS2). These
characterizations allow us to take the second step: namely, to state precisely how
CS2 is qualitatively different from CS1. With respect to numerical content, there
are three CS1s: analog magnitude representations, parallel individuation, and natural
language quantification.

The substantive claims in TOOC are that these three systems of representation
exist, have been characterized correctly, and are the only representational systems
with numerical content manifest in infancy and the toddler years. TOOC’s picture
of number development would be falsified if evidence were to be forthcoming for
innate numerical representations in addition to those described above, or different
from them. Indeed, one aim of my current work on the logical resources of infants
and toddlers is to search for such evidence.

CS2, the first explicit representational system that represents even a finite subset
of the positive integers, is the verbal numeral list embedded in a count routine.
Deployed in accordance with the counting principles articulated by Gelman and
Gallistel (1978), the verbal numerals implicitly implement the successor function,
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at least with respect to the child’s finite count list. For any numeral that represents
cardinal value n, the next numeral in the list represents n + 1.

CS2 is qualitatively different from each of the CS1s because none of the CS1s has
the capacity to represent any integers. The new primitives are the concepts 1, 2, 3,
4, 5, 6, 7, . . . , the concepts that underlie the meanings of verbal numerals. Parallel
individuation includes no summary symbols for number at all, and has an upper limit
of 3 or 4 on the size of sets it represents. The set-based quantificational machinery
of natural language includes summary symbols for quantity—(e.g. ‘some, all’) and
importantly contains a symbol with content that overlaps considerably with that
of ‘one’ (namely, the singular determiner, ‘a’), but the singular determiner is not
embedded within a system of arithmetical computations. Also, natural language
set-based quantification has an upper limit on the set sizes that are quantified
with respect to exact cardinal values (singular, dual, trial). Analog magnitude
representations include summary symbols for quantity that are embedded within a
system of arithmetical computations, but they represent only approximate cardinal
values; there is no representation of exactly 1, and therefore no representation of
+1. Analog magnitude representations cannot even resolve the distinction between
10 and 11 (or any two successive integers beyond its discrimination capacity), and
so cannot express the successor function. Thus, none of the CS1s can represent 10,
let alone 342,689,455.

As required by CS2’s being qualitatively different from each of the CS1s that
contain symbols with numerical content, it is indeed difficult to learn. American
middle-class children learn to recite the count list and to carry out the count routine
in response to the probe ‘how many’, shortly after their second birthday. They do
not learn how counting represents number for another 1 1/2 or 2 years. Young
two-year-olds first assign a cardinal meaning to ‘one’, treating other numerals as
equivalent plural markers that contrast in meaning with ‘one’. Some 7 to 9 months
later they assign cardinal meaning to ‘two’, but still take all other numerals to
mean essentially ‘some’, contrasting only with ‘one’ and ‘two’. They then work
out the cardinal meaning of ‘three’ and then of ‘four’. This protracted period of
development is called the ‘subset’-knower stage, for children have worked out
cardinal meanings for only a subset of the numerals in their count list.

Many different tasks, which make totally different information processing
demands on the child, confirm that subset-knowers differ qualitatively from chil-
dren who have worked out how counting represents number. Subset-knowers
cannot create sets of sizes specified by their unknown numerals, cannot estimate
the cardinal values of sets outside their known numeral range, do not know what
set-size is reached if 1 individual is added to a set labeled with a numeral outside
their known numeral range, and so on. Children who succeed on one of these
tasks succeed on all of them. Furthermore, a child diagnosed as a ‘one’-knower
on one task is also a ‘one’-knower on all of the others, ditto for ‘two’-knowers,
‘three’-knowers and ‘four’-knowers. The patterns of judgments across all of these
tasks suggest that parallel individuation and the set-based quantification of natural
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language underlie the numerical meanings subset-knowers construct for numeral
words.

Also consistent with the claim of discontinuity, studies of nonverbal number
representations in populations of humans who live in cultures with no count list
(e.g. the Piraha; Gordon, 2004; Frank et al., 2008), and populations of humans in
numerate cultures with no access to a count list (e.g. homesigners, Spaepen et al.,
2011) show no evidence of any number representations other than the three CS1s.

In sum, the construction of the numeral list representation is a paradigm example
of developmental discontinuity. How CS2 transcends CS1 is precisely characterized,
and consistent with this analysis, CS2 is difficult to learn and not universal among
humans.

10. Greater Expressive Power?

The above analysis makes precise the senses in which the verbal numeral list (CS2)
is qualitatively different from those manifest representations with numerical content
that precede it: it has a totally different format (verbal numerals embedded in a count
routine), none of the CS1s with numerical content can express, even implicitly,
an exact cardinal value over 4. But is the argument that the concepts for specific
integers are new primitives, undefinable in terms of preexisting concepts using the
combinatorial resources available to the child, actually correct? This argument, if
correct, establishes the claim that acquiring the verbal count list representation of
integers increases expressive power. As I comment in TOOC, this is on its face
an odd conclusion. Integers are definable, after all, in terms of many different
possible sets of primitives (e.g. 1 and the successor function, or the principle
that 1-1 correspondence guarantees numerical equivalence plus the resources of
quantificational logic).

Rey assumes that the logical combination underlies the transition from CS1 (core
cognition of number) to CS2 (representations of verbal numerals that implicitly
express the successor function). This is only possible if the capacity to represent
integers is innate (e.g. if there is an innate representation of 1 and the successor
function), or if integers are definable, by logical construction, from manifest innate
primitives using manifest logical processes of conceptual combination. I agree
that whether learning integers increases expressive power simply is this question.
Without a full characterization of the manifest combinatorial (logical) apparatus
available to the child at the time the integers are constructed one cannot definitively
answer the question of whether the child could in principle construct integer
representations from innate resources, quite apart from the question of whether this
is how the child does arrive at integer representations. But one can explore how the
child actually does do so, and, in the remaining pages of this article, I explain why I
believe the process is not one of logical construction.

It’s true that humans must ultimately be able to formulate concepts of integers
using the explicit machinery of logic, enriched by whatever numerical concepts are
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necessary as well (what is actual is possible). But it is only after very long historical,
and ontogenetic, developmental processes that the construction of integers in terms
of logic or Peano’s axioms is made. We simply do not know whether part of this
process involved bootstrapping new logical representations as well as new numerical
primitives.

11. A Logical Construction of the Cardinal Principle

Piantadosi et al. (2012) provided a proof of concept demonstration that children
could, in principle, construct a count list representation of the integers (at least up to
‘ten’) by conceptual combination alone, given the full general resources of logic (in
the form of lambda calculus, including the capacity for recursion, as well as specific
logical and set operators such as if/then and set comparison functions), knowledge
of the structure of the count list (its order), four numerical primitives: concepts of
singleton, doubleton, tripleton, and quadrupleton (i.e. already manifest concepts of one,
two, three, and four), as well as other logical and set operators (if/then; set-difference).
This is a proof of concept in the sense of learning by a computer that has these
resources. Piantadosi et al. appeal to the literature on learning to count in support
of the claim that these numerical concepts and a representation of the count list are
manifest at the time of the induction of the counting principles, but they merely
assume—without evidence—that full general resources of lambda calculus and
logic are available for the generation of hypotheses about what ‘one’, ‘two’, ‘three’,
‘four’, ‘five’ . . . through ‘ten’ mean. They assume that children learn the meanings
of the words ‘one’ through ‘ten’ from hearing words in cardinal contexts, through
Bayesian enumerative induction. Thus, their model satisfies Fodor’s Premises 1 and
2.

The model receives input in the form of sets with 1 to 10 items paired with the
appropriate verbal numeral. It learns a function, in the language of lambda calculus,
that allows it to answer the question ‘how many individuals?’ with the correct
numeral. The model’s input reflects the relative frequency of verbal numerals in
parental speech to children (i.e. ‘one’ is vastly more frequent than ‘two’, and so
on.) Learning is constrained by limiting the combinatorial primitives that articulate
hypotheses to be evaluated to those detailed above, by a preference for simpler
hypotheses (i.e. shorter expressions in lambda calculus), and by a parameter that
assigns a cost for recursion. After considering over 11,000 (!) different hypotheses
composed from these primitives, the model learns to assign the words ‘one’
through ‘four’ to the concepts singleton, doubleton, tripleton, and quadrupleton, and also
(independently) learns a recursive cardinal principle knower function that assigns the
numerals ‘one’ through ‘ten’ to sets of one through ten individuals. The recursive
function tests whether the set in question (S) is a singleton, and if so, answers ‘one’.
If not, it removes an element from S, using the set-difference primitive, and uses
the recursive function to apply the same singleton probe on the resultant set. If
the answer is yes, it then applies the function next (defined for the count list) and
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outputs the next word in the list as the answer to the question, if not, it recursively
repeats this step.

The model matches, qualitatively, several details of children’s learning to count:
children go through ‘one’-, ‘two’- ‘three’- and ‘four’-knower stages, in that order,
and depending upon the cost assigned to recursion, learn the CP-knower function
after becoming ‘three’-knowers or ‘four’-knowers. Before the model learns the
recursive CP-function, it has no way of knowing what numeral to apply to sets
greater than 4, and in this sense Piantadosi et al. claim a discontinuity in the model’s
knowledge of number word meanings. Thus, they claim for this model that it
puts bootstrapping on a firm computational basis, as well as focusing on the logical
resources actually needed for bootstrapping to succeed.

Piantadosi et al. assert that combination is the source of novelty. Therefore,
in the current discourse, they are denying a genuine discontinuity. There is no
change in expressive power—the manifest primitives (both numerical and logical)
clearly can, in combination, express the cardinal meanings of ‘one’ through ‘ten’.
I will show why this model does not implement Quinean bootstrapping after
I’ve discussed Quinean bootstrapping (see Rips, Bloomfield, and Asimuth, 2013,
for an illuminating discussion). Here I simply want to acknowledge that, of
course, depending upon the manifest concepts (both numerical and logical) actually
available to the child, it certainly could be possible to learn the meanings of verbal
numerals by constructing them from antecedently available concepts through logical
combination.

The question that concerns me is how representations of integers actually arise in
development. In what follows, I sketch a very different picture, one that does not
rely on conceptual combination alone, and provide reasons to believe that this is the
correct picture. My goal is to provide reasons to doubt that hypothesis formation
by logical combination from primitives is the only source of new concepts.

12. Quinean Bootstrapping

In Quinean bootstrapping episodes, mental symbols are established that correspond
to newly coined or newly learned explicit symbols. The latter are initially place-
holders, getting whatever meaning they have from their interrelations with other
explicit symbols. As is true of all word learning, newly learned symbols must
necessarily be initially interpreted in terms of concepts already available. But at the
onset of a bootstrapping episode, these interpretations are only partial—the learner
does not yet have any manifest concepts in terms of which he or she can formulate
the concepts the symbols will come to express.

The bootstrapping process involves aligning the placeholder structure with the
structure of existent systems of concepts that are manifest in similar contexts.
Both structures provide constraints, some only implicit and instantiated in the
computations defined over the representations. These constraints are respected as
much as possible in the course of the modeling activities, which include analogy
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construction. When the bootstrapping is under metaconceptual control, as is the
case when it being carried out by adult scientists, the analogical processes are
explicit, and the fruitfulness of the analogies are monitored, and other modeling
processes are also deployed, such as limiting case analyses, and thought experiments.
Inductive inference is also often involved in bootstrapping, constrained by the
actual conceptual structures in the process of being aligned.

In the case of the construction of the numeral list representation of the integers,
the memorized count list is the placeholder structure. Its initial meaning is exhausted
by the relations among the external symbols: they are stably ordered and applied to
a set of individuals one at a time.. ‘One, two, three, four . . . ’ initially has no more
meaning for the child than ‘a, b, c, d . . . ’, if ‘a, b, c, d . . . ’ were to be recited while
attending to individuals one at a time.

The details of the subset-knower period suggest that the resources of parallel
individuation, enriched by the machinery of linguistic set-based quantification,
provide numerical meanings for the first few numerals, independently of their role
in the memorized count routine. Le Corre and I (2007) proposed that the meaning
of the word ‘one’ is represented by a mental model of a set of a single individual
{i}, along with a procedure that determines that the word ‘one’ can be applied to
any set that can be put in 1-1 correspondence with this model. Similarly ‘two’ is
mapped onto a long term memory model of a set of two individuals {j k}, along
with a procedure that determines that the word ‘two’ can be applied to any set that
can be put in 1-1 correspondence with this model. And so on for ‘three’ and ‘four’.
This proposal requires no mental machinery not shown to be in the repertoire of
infants—parallel individuation plus the capacity to compare models on the basis
of 1-1 correspondence. But those representations are enriched with the long-term
memory models that have the conceptual role of assigning ‘one’, ‘two’, ‘three’,
and ‘four’, to sets during the subset-knower stage of acquiring meanings for verbal
numerals. We suggested that enriched parallel individuation might also underlie the
set-based quantificational machinery in early number marking, making possible the
singular/plural distinction, and in languages that have them, dual and trial markers.
The work of the subset-knower period of numeral learning, which extends in
English-learners between ages 2:0 and 3:6 or so, is the creation of the long term
memory models and computations for applying them that constitute the meanings
of the first numerals the child assigns numerical meaning to.

Once these meanings are in place, and the child has independently memorized
the placeholder count list and the counting routine, the bootstrapping proceeds
as follows: The child must register the identity between the singular, dual, trial,
and quadral markers and the first four words in the count list. In the course of
counting the child notes (at least implicitly) the suspicious coincidence that the
numeral reached when counting a set of ‘three’ is also the word a ‘three’-knower
takes to represent the cardinal value of that set. This triggers trying to align these
two independent structures. The critical analogy is between order on the list and
order in a series of sets related by additional individual. This analogy supports the
induction that any two successive numerals in the child’s finite count list will refer
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to sets such that the numeral farther in the list picks out a set that is 1 greater than
that earlier in the list.

In my earliest writings I characterized the induction made by 4-year-olds as
yielding the first representations of integers. Let me be clear, as TOOC is, when the
child has built the count list representation of the first 10 or so verbal numerals, the
child does not yet have general representation of integers. There are many further
bootstrapping episodes along the way to a representation of integers, two of which
are discussed in TOOC—about 6 months after becoming CP-knowers, children
construct a mapping between the count list and analog magnitude representations,
yielding a richer representation of the meanings of verbal numerals (Chapter 9).
Shortly thereafter, children abstract an explicit concept number, and explicitly
induce that there is no highest number (Hartnett and Gelman, 1998). And it is
not until late in elementary school or even high school that children construct a
mathematical understanding of division that allows them to reanalyze integers as
subset of rational numbers (Chapter 9). All of these developments are along the way
to richer and richer representations of integers. But without the construction of an
integer list representation of a finite subset of integers, which provides children with
new primitive concepts for specific integers beyond four (e.g. ‘seven’ representing
exactly seven) as well as providing new representations of ‘one’ through ‘four’ (in
terms of their place in a count list, rather than only in terms of enriched parallel
individuation), these further bootstrapping episodes never get off the ground.

This proposal illustrates all of the components of bootstrapping processes: place-
holder structures whose meaning is provided by relations among external symbols,
partial interpretations in terms of available conceptual structures, modeling processes
(in this case analogy), and an inductive leap.

The greater representational power of the numeral list than that of any of the
systems of core cognition from which it is built derives in part from creating a new
representational structure—a count list—a new conceptual role—counting, and
just using it. Much of the developmental process involves no hypothesis testing. Just
as when the child learns a new telephone number (memorizes an ordered list of
digits) and learns to use it in a procedure (dial, press buttons) that results in a ring
and connection to Daddy, here the child learns an ordered list and procedure for
applying it to individuals as one touches them one at a time. This new structure
comes to have numerical meaning through the alignment of aspects of its structure
with aspects of the structure of manifest number representations. These, in turn,
have been built from set-based quantification (which gives the child singular,
dual, trial, and quadral markers, as well as other quantifiers), and the numerical
content of parallel individuation (which is largely embodied in the computations
carried out over sets represented in working memory models with one symbol for
each individual in the set). The alignment of the count list with these manifest
meanings is mediated, in part, by the common labels (the verbal numerals) in both
structures. At the end of the bootstrapping episode, the child has created symbols
that express information that previously existed only as constraints on computations.
Numerical content does not come from nowhere, but the process does not consist
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of defining ‘seven’ by conceptual combination of primitives available to infants.
‘Seven’ is genuinely a new primitive, the meaning of which is provided in part by
its conceptual role in a new conceptual structure.

With this characterization in hand, one can see why the Piantadosi et al. (2012)
model does not implement a Quinean bootstrapping process. There are three
theoretically important differences between Quinean bootstrapping and a model
that formulates hypotheses at random by explicit conceptual combination from 15
primitives, one numeral at a time, and then uses Bayesian induction to evaluate them.
First, although, like Piantadosi et al., I assume that children have representations
with the content singleton, doubleton, tripleton, quadrupulton, before the children
induces the cardinal principles, the numerical content of these representations is
carried by enriched parallel individuation, and is merely implicit until the child
constructs the relevant structures. The first explicit symbols are ‘one’, ‘two’, ‘three’
and ‘four’ and their meanings are not already existing primitives singleton, doubleton,
tripleton, quadrupulton. That is, there is no innate explicit symbol doubleton that can
figure in hypotheses composed using lambda calculus. Similarly, the representations
that underlie the meaning of seven, after the cardinal principle induction, are largely
implicit in the procedures of the count routine, not explicitly defined in a language
of thought. Second, the meanings of numerals in the Piantadosi model are learned
entirely independently from each other. That is, children could, in principle,
compose the recursive definition of numerals first, without ever going through
‘one’-, ‘two’-, ‘three’-, and ‘four’-knower stages. Indeed, the only parameters that
affect the timing of CP-transition are the cost of recursion and the encountering of
larger numerals in cardinal contexts. In Piantadosi’s model, knowing the meaning
of ‘one’ (as singleton) plays no role in learning the meanings of other numerals
or becoming a CP-knower. In Quinean bootstrapping, the structure created by
interrelations of the newly learned words, plus their partial meanings from initial
mappings to prelinguistic thought, play an essential, constitutive role in the learning
process. Thirdly, and relatedly, the Quinean bootstrapping story takes seriously
the question on the source of constraints on the learning process. It empirically
motivates its claims of the exhaustive set of primitives with numerical content, (the
three CS1s), and provides evidence for syntactic bootstrapping as an account for how
the child breaks into the meanings of the first numerals. As Rips et al., 2013, point
out in their illuminating discussion of the Piantadosi model, this model does not
provide an account for how the hypothesis space is conveniently limited to just the
15 numerically relevant primitives it randomly generates hypotheses from. The child
has much other numerically relevant knowledge at the time of the CP induction. If
that knowledge were included in the set of primitives, the hypothesis space created
by random combination from the primitives would explode beyond the already
entirely unrealistic 11,000 hypotheses considered and rejected by the model. If
numerically irrelevant primitives are included (how does the child decide which
primitives are relevant?), the problem would quickly become entirely intractable.

In sum, Quinean bootstrapping is very different from the Piantadosi logical
combination model, but which model provides better insight into how children
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actually learn how counting represents number? Two recent animal studies clarify
the nature of bootstrapping, allowing us to see that it does not involve hypothesis
testing over a huge space of possessed but unmanifest concepts, nor does it involve
logical combination of primitives. These studies also increase the plausibility that
that young children have the computational resources to engage in Quinean
bootstrapping.

13. Animal Models

In TOOC I speculated that Quinean bootstrapping might well be a uniquely human
(depending upon external explicit symbols as it does), and thus might provide part
of the explanation for the uniquely human conceptual repertoire. Since then,
two studies have convinced me that other animals have the capacity for Quinean
bootstrapping.

13.1 Alex
The first study (Pepperberg and Carey, 2012) drew on explicit numerical repre-
sentations created by Alex, an African grey parrot, who had been trained by Irene
Pepperberg for over 30 years. He had a vocabulary of over 200 words, including
object labels, color words, relational terms like ‘same’, and several other types of
labels. Alex had been taught to produce the words ‘three’ and ‘four’ in response to
‘how many x?’ for sets of 3 and 4 respectively. During this initial training, Alex was
also shown mixed sets of objects (e.g. 4 blue balls, 5 red balls, and 3 yellow balls),
and asked, for example, ‘what color three’, responding ‘yellow’. In other words,
he was first taught to produce and comprehend ‘three’ and ‘four’ as symbols for
cardinal values 3 and 4. After this training was in place, he was similarly taught to
produce and comprehend ‘two’ and ‘five’ as symbols for cardinal values 2 and 5.
And then ‘one’ and ‘six’ were added to his repertoire.

We do not know what non-linguistic numerical representations underlay these
explicit numeral representations, because we do not know the sensitivity of Alex’s
analog magnitude representations or the set size limit of his parallel individual
system. Analog magnitude representations themselves could have done so, or
both parallel individuation and analog magnitudes could have been drawn upon.
As he is a non-linguistic creature, he doesn’t have the resources of set-based
quantification that is part of the language acquisition device to draw upon. What
the quantificational resources of non-linguistic thought are has not been studied,
but Alex clearly had the capacity to selectively attend to small sets and evaluate
whether any given set had a cardinal value of ‘one’ through ‘six’.

After he had a firm understanding of the cardinal meanings of ‘one’ through ‘six’,
Pepperberg taught him to label plastic tokens of Arabic numerals ‘1, 2, 3, 4, 5’ and
‘6’, with the words ‘one’ through ‘six’ respectively. Arabic numerals were never
paired with sets of individuals. The only connection between Arabic numerals and
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set sizes was through the common verbal numeral (e.g. ‘two’ for ‘2’ and ‘two’ for
a set of 2 individuals.) He quickly learned to produce and comprehend the verbal
numeral labels for the Arabic numerals. Then with no further training, Pepperberg
posed him the following question for each pair of Arabic digits between ‘1’ and
‘6’: ‘Which color number bigger?’. He was to choose, for example, between a blue
‘3’ and a red ‘5’, the Arabic numeral tokens being the same size and the correct
answer being ‘red’. He succeeded at this task when first presented it; it required
no further training. Not only had he not been given any positive evidence that ‘2’
refers to a cardinal value, the only context in which he had answered questions
about ‘bigger’ and ‘smaller’ previously was in with regards to physical size (i.e.
‘which color bigger’ of two objects that differed in size).

Please dwell on this finding. It must be that the common labels (e.g. ‘two’) had
allowed him to connect a representation of the Arabic digits (e.g. ‘2’) with the
cardinal values (e.g. 2), and it must be that the intrinsic order in his nonverbal
representations of cardinal values allowed him to say which Arabic numeral was
bigger or smaller than which others. Although Alex had never been taught a
count list (and had been taught the cardinal meanings of numerals in the order
‘three/four’, ‘two/five’ and finally ‘one/six’), by the time we began our study Alex
could produce and comprehend the words ‘one’ through ‘six’ as labeling both
cardinal values of sets and Arabic digits, and could use the intrinsic order among set
sizes to order his verbal numerals.

We were thus in a position to teach Alex to label Arabic numerals ‘7’ and ‘8’,
‘seven’ (pronounced by him ‘sih-none’ and ‘eight’ respectively.). This training took
about a year, and during it he had no evidence that ‘7’ or ‘8’ were numerals. He
was then taught that ‘6’ is a smaller number than ‘7’, which in turn is a smaller
number than ‘8’, by posing the ‘which color number bigger/smaller’ task, giving
him feedback if he guessed wrong. This was the first evidence he had that ‘7’ and
‘8’ are numerals, as are ‘1’ through ‘6’. It took only a few hours to train him to
answer ‘which color number bigger?’ and ‘which color number smaller?’ for each
of the pairs: ‘6/7’, ‘6/8’ and ‘7/8’. After he had reached criterion on this task
he was probed which color number bigger and smaller for each pair of numerals
‘1, 2, 3, 4, 5, 6’ with respect to ‘7’ and ‘8’, and succeeded at this task with no
further training. Thus, at this point he knew that ‘7’ and ‘8’ are numerals, labeled
‘sih-none’ and ‘eight’ respectively, and he knew that ‘8’ is a bigger number than
‘1’ through ‘7’ and ‘7’ is a bigger number than ‘1’ through ‘6’. Importantly, he had
never been given any information about which cardinal values ‘sih-none/7’ and
‘eight/8’ referred to.

The question of this study was whether he would make the (wildly unwarranted)
induction that ‘sih-none/7’ expresses cardinal value 7 and ‘eight/8’ expresses
cardinal value 8. He did. The very first time he was asked to label a set of seven
object ‘how many treats?’ he answered ‘sih-none’ and the first time he was asked
to label a set of eight objects ‘how many treats?’ he said ‘sih-none’ and immediately
self corrected to ‘eight’. Over a two-week period he was asked to label sets of
different sizes (these questions were probed by many different experimenters, only
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a few questions a day, intermixed with many other questions currently under
study, concerning visual illusions and many other things. He performed better than
chance producing both ‘sih-none’ and ‘eight’ (p <.01 in each case). He was also
given comprehension trials, (e.g. ‘what color seven?’ and ‘what color eight?’, each
question probing three sets or either 6, 7, 8, 9, or 10 colored blocks), and got 11
of 12 correct (p <.01). Thus, Alex had inferred the cardinal meanings of ‘eight’
and ‘seven/sih-none’ from knowledge of the cardinal meanings of ‘one’ through
‘six’ and from the fact that six is a smaller number than seven and seven is a smaller
number than eight.

The Piantadosi model could not possibly apply here. This learning episode did
not involve hypothesis confirmation. Alex never got any feedback as to whether
his answers were correct. Nor was he ever given the pairings between ‘seven
(sih-none)’ and sets of 7 and ‘eight’ and sets of eight that constitute the data for
the Piantadosi model. Alex must have made an inductive inference based on the
meanings of numerals he already had constructed. Given that his knowledge of the
use of numerals was exhausted by just a few procedures they entered into (answering
questions about set size and numerical order, labeling cardinal values of sets and
labeling Arabic numerals), and by the mappings he had already made between
representations of sets, verbal and Arabic numerals, his induction was subject
to strong constraints. He clearly had not searched through a vast unconstrained
hypothesis space specified by logical combination of all 250 or so concepts he
had that were lexicalized (or even a larger set of conceptual primitives he may
possess). As mentioned, this induction was wildly unwarranted; what he had been
taught was consistent with ‘7’ referring to any set size greater than ‘6’ and with
‘8’ referring to any set size greater than whatever ‘7’ refers to. But in his 30 years
of working with numerals, they had been introduced as related by +1 (‘three’
versus ‘four’, then ‘two’ and ‘five’, and then ‘one’ and ‘six’ added). His induction
was not mathematically or logically warranted, but it was sensible, given his actual
experience with numerals. So too is the child’s.

Piantadosi et al. might reply that Alex may have made the leap to CP knower,
having engaged in the same conceptual combination process as hypothesized by
their model that children do, during the period of learning where he was taught
‘one’ through ‘six’. In that case, the induction he made here was that ‘seven’ and
‘eight’ were the next two numerals, in that order, in the relevant list after ‘six’.
This is also not possible, because Alex lacked an essential set of primitive functions
for the Piantadosi model during this earlier period: namely, he did not have a
count list. He was never taught a list, per se, nor ever taught to count. Thus, he
could not form any generalizations carried by the function Next applied to a count
list. He wasn’t even taught the numerals in numerical order (remember he learned
first ‘three’ and ‘four’, then ‘two’ and ‘five’ and finally ‘one’ and ‘six’. It’s true he
explicitly knew his numerals were ordered, but that order had to be derived from
by the intrinsic order of cardinal values that were expressed by numerals and could
not have been part of the source of the mapping between numerals and cardinal
values. That order was not carried by a count routine and a memorized ordered
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list. Further insight into the process of learning Alex was more likely engaged in is
provided by a recent study of rhesus macaques.

13.2 Rhesus Macaques
Livingstone et al. (2009) taught four juvenile male rhesus macaques (1-year-old at
beginning of training), to choose the larger of two dot arrays, or to choose a symbol
that came later in an arbitrary list. The dot arrays varied between 1 and 21 dots,
and the arbitrary list of symbols was ‘1, 2, 3, 4, 5, 6, 7, 8, 9, X, Y, W, C, H, U, T,
F, K, L, N, R’. The monkeys were trained on the dot arrays and on the symbol
list on alternate days. Training in both cases involved giving the monkey a choice
between two stimuli (e.g. 2 dots and 7 dots, or ‘2’ and ‘7’) on a touch screen. When
the monkey touched one of the arrays, he was rewarded with the number of pulses
of juice or water that corresponded to his choice. Thus, he was always rewarded,
but got bigger rewards for picking the larger dot array or the symbol later in the
list. The monkeys learned to pick the stimulus that led to the larger reward with
both stimuli sets, and were extremely accurate with both types of stimuli, making
errors only for closely adjacent values.

There were two extremely interesting results that emerged from this study. First,
with no training, the first time monkeys were given a choice between dot arrays
and symbols (e.g. 4 dots and ‘7’), they chose the stimulus that would lead to the
larger reward. That is, they had automatically integrated the two predictors of
quantity of liquid—dot arrays and discrete symbols ordered in a list. Clearly this
integration had to be mediated by the fact that the dot array and discrete list tasks
established a common context (same testing chamber, same dependent measure of
touching one of two stimuli on a screen), and the outcomes predicted were from
the same scale of quantities of liquid. Still, they had integrated them. This is the
structural alignment process drawn upon in bootstrapping.

Second, when making a choice between dot arrays, the noise in choices among
large sets (e.g. 19 versus 21) was greater than that between smaller sets (e.g. 9
versus 11 or 3 versus 5). In fact, the choices showed scalar variability, the marker
of analog magnitude values (see above). But errors in when choosing values on the
ordered list of discrete symbols did not increase as the list got longer. Livingstone
et al. interpreted this difference as showing that the mapping from dot arrays to
liquid quantity showed scalar variability, whereas the mapping from the list to
hedonic value was linear. A more likely interpretation is that the mapping, during
learning, reflected recognizing the relevance of each type of order (order among
set sizes in analog magnitude representations of number of dots, and linear order
in an arbitrary list) and inducing a rule that one should pick the stimulus later
in each ordering. It’s analog magnitude representations of dots that showed scalar
variability, and the representations of the linear order in the list that did not. It’s true
that some mapping between each ordering and quantity of liquid was constructed
in the process, because the two orderings were integrated. But if choosing between
predicted quantities of liquid underlay each choice, both tasks should have shown
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scalar variability, since quantity of liquid is represented with an analog magnitude
value. I suggest that the structure of an ordered list of symbols is a linear order,
supported by the discriminability of each symbol from each other, and this order
directly determined choice once the task was learned. This structure, after being
constructed, was alignable with the intrinsic order of representations of quantity of
liquid, and then with the other predictor of quantity of liquid (dot arrays). This is
structurally the same as the alignment between an ordered list and analog magnitude
representations of number achieved some 6 months after children have become
cardinal principle knowers.

Livingstone’s rhesus macaques did not induce the cardinal meaning of a new
symbol from its place in a count list, but nonetheless they exhibited several
components of the extended bootstrapping process that supports children’s (and
Alex’s) doing so. They did build a representation of an ordered list (21 elements
long!) and aligned it with a representation that was itself intrinsically ordered.
Also, they automatically aligned two different ordered representations (the list, the
dot arrays) which were separately aligned to quantity of liquid. Clearly, finding
the structural correspondence between an ordered list and increasing magnitude
(whether that magnitude is number or a continuous variable like quantity of liquid)
is a natural computation, at least for primates.

14. Conclusions Concerning the Nature of Quinean Bootstrapping

As the historical examples discussed in TOOC make clear, bootstrapping
episodes are often under metaconceptual control; the scientist is consciously
engaged in exploring mappings between mathematical structures and physi-
cal/biological/psychological phenomena. But as the above examples from animal
learning make clear, metaconceptually explicit hypothesis testing and modeling
procedures are not necessary.

I now turn to the questions of whether the representations achievable by
bootstrapping should be thought of as a preexisting hypothesis space, and whether
the mechanism is exhausted by hypothesis formation and confirmation and by
logical combination of existing primitives.

First, prior to the bootstrapping processes, neither children, nor Alex, nor rhesus
macaques have any representations for exact cardinal values outside of the range
of parallel individuation. A representations of 341,468, or of 10, does not exist in
some preexisting hypothesis space ready to become manifest. Some of the learning
processes involved in this extended episode are certainly not hypothesis testing
(e.g. memorizing the ordered list of numerals), and some are subpersonal (as Shea
[2011] put it, ‘not explainable by content;’ see also Strevens’ [2012] proposal that
introjection involves subpersonal processes). That is, the connection of the ‘three’
in count list with the ‘three’ of enriched parallel individuation is most probably
mediated simply by the shared label and associative machinery, just as Alex’s
aligning of his representations of verbal numerals, set sizes, and Arabic numerals is
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based first on common labels, which then supports ordering them according to the
intrinsic order among cardinal values within AM and parallel individuation systems
of representations. Alex never got any feedback regarding the pairing of ‘seven’ and
‘eight’ with cardinal values, so no hypothesis confirmation or Bayesian enumerative
induction was involved. Similarly, the rhesus’ aligning of an ordered list of 21
discrete symbols with set sizes from 1 to 21 depends upon shared associations
with quantities of liquid. Such alignment processes are not processes of logical
combination (although logical combination is involved in building the placeholder
structures). I conclude that Quinean bootstrapping yields new primitives in this case,
representations of integers embedded in a count list, and is a learning mechanism
that does not conform to Premises 1 and 2 of Fodor’s argument.

15. Rey’s (and Others’) Critiques of Quinean Bootstrapping

At the end of his commentary, Rey comments ‘any process of learning can only take
place against a background of an innate repertoire of concepts’. I cannot imagine
he would think I would deny that, since I explicitly say the same thing throughout
TOOC, and virtually everybody on all sides of these debates agrees, although
not everyone likes the word ‘innate’. For example, the empiricists’ proposal for
the innate repertoire that they knew was needed was that it consists of ‘sensory
ideas’. The CS1s are, by hypothesis, the only innate representations with numerical
content, and their characterization includes specific proposals concerning the nature
of the symbols involved and computations supported. These representations are the
sources of the inductions the child makes, as well as the source of the constraints
on those inductions.

Rey denies Quinean Bootstrapping is a learning mechanism that can increase
expressive power by creating new primitives not laying in wait. He also denies
that Quinean bootstrapping actually creates new primitives not constructable by
logical combination from others. Specific versions of his challenges include 1)
analogy cannot create new representational resources, as analogies require alignable
structures antecedently, 2) the induction the child makes requires an antecedent
appreciation of the successor function, and 3) the bootstrapping proposal fails to
confront Goodman’s ‘grue’ problem, the problem of constraints on induction. As I
hope is already clear, I believe all of these challenges to be off the mark.

With respect to the challenge that analogy requires already available represen-
tations to be aligned, I agree. Rey misses that the bootstrapping process is an
extended one. The new representational resource is not created at the moment of
the analogy and the induction alone. By the time of the induction of the counting
principles, the child has indeed created the alignable structures needed for the
limited induction he/she makes, just as Alex had. In the case of the child these
structures are, by hypothesis, the count list and representations of the cardinal values
of the numerals ‘one’ through ‘four’ supported by enriched parallel individuation.
The whole process begins with the innate numerical resources (the CS1s described
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above), the enrichment of parallel individuation during the subset-knower stage,
and the creation of the meaningless placeholder structure. Of course one needs
both structures to align them; the bootstrapping process accounts for the origin of
each structure and shows what new arises from this alignment.

I don’t agree with Rey’s second critique, that to notice sets of two differ from sets
of three by a single individual, one must already represent the successor function.
All one must be able to do is subtract 2 from 3, and 1 from 2, computations
that both parallel individuation and analog magnitude representations support. The
successor function, in contrast, generates an infinite series of cardinal values, but
the knowledge the child has is initially restricted to the relations among sets of one,
two, three and four (because of the set size limit on parallel individuation and the
sensitivity of analog magnitude representations being limited to 3:4 or 4:5 among
young preschoolers.). But of course, without the capacity to subtract 2 individuals
from a set of 3 individuals and 1 individual from a set of 2 two individuals, yielding
1 individual in each case, the child could not make the induction concerning how
his or her short count list works. I do not deny this capacity must be in place for
the induction; rather I present evidence that it is, including how it is (within the
system of enriched parallel individuation in the case of children’s learning to count),
and evidence that precisely that induction separates subset-knowers from cardinal
principle-knowers. Again, one must consider the format and computational roles of
the actual representations involved. The induction the child most probably makes
is that when you add an individual to a set for which you would reach numeral N
when applying the count routine, if you count the resulting set, you will reach the
next word on the count list. This is not yet the successor function, and certainly
doesn’t presuppose the successor function.

Turning to the heart of Rey’s criticism: that I failed to take on the psychological
version of Goodman’s new riddle of induction. Goodman’s concern was providing
a valid warrant for inferring ‘all emeralds are green’ in preference to ‘all emeralds are
grue’. Neither the induction Alex made nor that of children is warranted. As Rey
makes clear, the psychological question Rey and I are concerned with is explaining
why we don’t entertain the latter generalization when considering the color of
emeralds, or why children don’t entertain the hypothesis that ‘five’ is a proper name
for a set or the last number word in a mod 6 modular arithmetic count list. This
article has been an extended response to the critique that the bootstrapping story
fails for failing to answer this question. Human inductive inference is profligate;
so too, apparently, is parrot inductive inference. Accounting for the constraints on
induction is everybody’s problem. Where Rey goes wrong derives from his view of
possessed concepts as a vast hypothesis space, laying in wait to become manifest. If
this were right (think Piantadosi et al.), the issue of constraints on induction would
indeed be trenchant. As I have argued, I think this the wrong way to think about
concept possession, as well as the wrong way to think about concept acquisition.
As I have already said, one can always explore the possible outputs of proposed
learning mechanisms, thus exploring concept possession in the unproblematic sense
of potential final states. And as I have also already said, any actual learning mechanism
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imposes constraints on what can be learned. Thus, part of the project of exploring an
actual learning mechanism is studying what constraints are imposed by it, including
constraints on induction when induction is involved (which is not always). Positive
characterizations of learning mechanisms always specify the constraints under which
they operate.

One understands the constraints on the inductions made by 3-year-olds and by
Alex by attending to the extremely limited contexts in which inductions are usually
drawn (think Alex and the rhesus macaques, as opposed to the model of Piantadosi
et al., selecting among over 11,000 hypotheses consistent with the data it has
received, where that large hypothesis space has been artificially constrained). The
induction made during the hypothesized bootstrapping episode during childhood,
and by Alex, is constrained by the structures being aligned, and their very
local conceptual roles. The scientific work involved in understanding episodes of
Quinean bootstrapping is characterizing those structures, showing how they arise,
and showing what new is achieved by aligning them.

16. Final Conclusions

I have argued, contrary to Rey’s critique, that I have not confused an epistemic
question with a logical/semantic one, and that increases of expressive power in the
logical/semantic sense are commonplace, due to a variety of learning mechanisms
that result in new conceptual primitives. In cases where this is easy for the learner,
the concepts to be acquired are constrained by already existing conceptual roles
(such as a conceptual role for a representation of the North Star, to guide migration
in celestial navigators, of the general conceptual roles for representations of object
kinds in general, and artifact kinds and agent kinds, in particular). In cases where
this is hard for the learner, the learner must create new conceptual roles (part of the
bootstrapping process), which then constrain further learning in a way analogous
to the easy cases. In neither case does the learner search among a vast space
of possessed but unmanifest concepts, nor does conceptual novelty arise only by
combining primitives using the combinatorial machinery of logic.

I embrace Rey’s ecumenical proposal that concept manifestation is a worthy
project for psychological study, although I reject his picture of concept manifes-
tation as some mysterious process through which already existing, possessed but
unaccessible, concepts become available for thought. Concepts we can think with
are the output of actual learning mechanisms that in turn provide actual constraints
on learning, including constraints on induction when induction is part of the
learning process. The characterization of those learning mechanisms is where the
explanation of the human conceptual repertoire will play out.

Department of Psychology
Harvard University
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