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a b s t r a c t

Recent studies have documented an evolutionarily primitive, early
emerging cognitive system for the mental representation of
numerical quantity (the analog magnitude system). Studies with
nonhuman primates, human infants, and preschoolers have shown
this system to support computations of numerical ordering, addi-
tion, and subtraction involving whole number concepts prior to
arithmetic training. Here we report evidence that this system sup-
ports children’s predictions about the outcomes of halving and per-
haps also doubling transformations. A total of 138 kindergartners
and first graders were asked to reason about the quantity resulting
from the doubling or halving of an initial numerosity (of a set of
dots) or an initial length (of a bar). Controls for dot size, total dot
area, and dot density ensured that children were responding to
the number of dots in the arrays. Prior to formal instruction in
symbolic multiplication, division, or rational number, halving
(and perhaps doubling) computations appear to be deployed over
discrete and possibly continuous quantities. The ability to apply
simple multiplicative transformations to analog magnitude repre-
sentations of quantity may form a part of the toolkit that children
use to construct later concepts of rational number.

! 2009 Elsevier Inc. All rights reserved.

Introduction

The ability to represent approximate numerical magnitudes without the use of language is com-
mon to humans of all ages and to nonhuman animals. Animals and human infants, children, and adults
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prevented from applying their exact verbal counting skills discriminate sets based on their cardinal
values (for animals and human adults, see Dehaene, 1997, for a review; for human infants and chil-
dren, see Barth, La Mont, Lipton, & Spelke, 2005; Cordes & Brannon, 2008; Xu & Spelke, 2000). An ‘‘ana-
log magnitude representation” system appears to underlie this ability; the discrete numerosity of the
set is internally coded by a mental magnitude, with the magnitude proportional to the number of ele-
ments in the set. Like comparative judgments of many kinds of continuous quantities, comparative
judgments of discrete number are least accurate when the ratio of compared numerosities is closest
to 1:1. Ratio-dependent discrimination in accord with Weber’s law is a key signature of the analog
magnitude system (Dehaene, 1997; Gallistel & Gelman, 1992, 2000).

Analog magnitude representations support computations of numerical ordering, addition, and sub-
traction across species and throughout the course of development. Most relevant here is evidence that
nonverbal animals, as well as human infants and children, use analog magnitude representations to
compute the outcomes of additive operations over visually presented sets of elements (Barth, Beck-
mann, & Spelke, 2008; Barth et al., 2005; Cantlon & Brannon, 2007; Flombaum, Junge, & Hauser,
2005; Gilmore, McCarthy, & Spelke, 2007; McCrink & Wynn, 2004; Slaughter, Kamppi, & Paynter,
2006).

More controversial is the question of whether analog magnitude representations of approximate
number also support multiplicative operations on sets before young children receive formal training
in multiplication and division. Concepts of multiplicative change, rather than additive change, are crit-
ical to children’s later construction of an understanding of rational number (Smith, Solomon, & Carey,
2005), a famously difficult achievement of middle school math. It is often suggested that children’s
early intuitions about quantity transformations may support later learning about fractions, but these
intuitions are often thought to rest on protoquantitative, nonnumerical notions of amount (Confrey,
1994; Mix, Levine, & Huttenlocher, 1999; Resnick, 1992; Resnick & Singer, 1993). To our knowledge,
the potential role of analog magnitude representations of discrete quantity in children’s intuitive
knowledge of multiplicative transformations has not yet been investigated.

Gallistel and Gelman (1992, 2000, 2005) hold that mental magnitudes representing number (like
those representing nonnumerical quantity) do enter into ordering, addition, subtraction, multiplica-
tion, and division operations, even in the brains of nonverbal animals (Gallistel, 1990; Gallistel,
Mark, King, & Latham, 2001; Leon & Gallistel, 1998; but see Church & Broadbent, 1990; Kakade
& Dayan, 2002; Yang & Shadlen, 2007, for alternative views). On this view, analog magnitudes pro-
vide a common representational format permitting computations over both continuous and dis-
crete quantities.

Some human adult studies also appear to be consistent with this idea; adults succeed at tasks that
may involve multiplying and dividing approximate numerical magnitudes even when they are pre-
vented from exact counting (Barth, 2002). Because adults have had many years of arithmetic instruc-
tion, however, they may have solved these tasks by forming verbal estimates of the quantities
involved and then invoking symbolic multiplication or division. Studies of patients with calculation
deficits support this latter possibility because impairments in symbolic multiplication have been
linked to impairments in language but not in nonsymbolic number processing (Cohen, Dehaene, Cho-
chon, Lehéricy, & Naccache, 2000; Lemer, Dehaene, Spelke, & Cohen, 2003).

Representations of both discrete and continuous quantity do appear to support simpler forms of
reasoning about multiplicative relationships. Adults track proportions unconsciously and make use
of them when transferring from a discrimination learned for a continuous quantity to a novel discrim-
ination of discrete quantity (Balci & Gallistel, 2006). A recent study showed that even infants sponta-
neously represent the ratios between two sets of dots, discriminating new arrays with the same ratios
of blue to red dots as those they have seen before from arrays in which the dots are in a different ratio
relationship (McCrink &Wynn, 2007). In young children, much previous work on proportional reason-
ing has focused on continuous quantity. Although some studies have reported earlier competence in
proportional reasoning about continuous versus discrete quantity, these often involve discrete tasks
that provide opportunities for exact counting. Children’s apparent lack of competence could stem
not from difficulties in reasoning about discrete quantities per se but rather from the tendency to
count when a task affords the opportunity (Boyer, Levine, & Huttenlocher, 2008; Jeong, Levine, &
Huttenlocher, 2007).
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Here we focus on a simple form of multiplicative reasoning: the ability to apply the multiplicative
transformations of halving or doubling to continuous or discrete quantities. We asked children to ob-
serve a few examples of such transformations, identify the ratio relationship that holds between the
original quantity and the transformed one, and then apply the same transformation to a novel quan-
tity and judge whether the transformed quantity would be larger or smaller than a comparison quan-
tity. This task requires more than the detection of a ratio relationship; to succeed, children must apply
a transformation that operates on an initial quantity to yield a second quantity that is a fixed ratio of
the first.

Some evidence suggests that young children might not succeed at these tasks. Children exhibit an
understanding of additive relations between quantities before they develop an understanding of mul-
tiplicative relations (Resnick & Singer, 1993), and numerous studies from the tradition of information
integration theory suggest that younger children apply additive integration rules rather than norma-
tive multiplicative rules (e.g., Anderson & Cuneo, 1978; Schlottmann & Anderson, 1994; Wilkening,
1982; Wilkening & Anderson, 1991; but see Gigerenzer & Richter, 1990). These results have led
researchers to argue that multiplicative reasoning is not available at all to children under 7 or 8 years
of age.

In contrast, other studies have found evidence of intuitive reasoning about multiplicative transfor-
mations in younger children provided that the task situation required the modification of only a single
quantity (Schlottmann, 2001; Schlottmann & Tring, 2005). Also, Confrey and her colleagues have ar-
gued that young children possess schemas that form the basis for reasoning about multiplicative oper-
ations without relying on repeated addition, proposing that children show intuitive insight into a
conceptual primitive called ‘‘splitting” that supports later reasoning about ratio, proportion, multipli-
cation, and division (e.g., Confrey, 1994).

The current studies addressed the following questions. First, is there evidence that analog magni-
tude representations of number can support computations of halving or doubling in young children?
We tested kindergartners and first graders, who have no formal instruction in symbolic multiplication
or division or in symbolic representations of fractions. We used a task in which stimuli are presented
rapidly (to discourage attempts at exact counting) and in which a single numerical quantity is trans-
formed (to maximize children’s chances of success). Second, are multiplicative computations evident
earlier, or more robustly, for continuous quantities than for discrete quantities? To address this ques-
tion, we adapted the same procedure to a task in which children mentally doubled or halved the mag-
nitude of a continuous quantity.

Experiment 1: Continuous and discrete doubling

Kindergartners and first graders observed a small number of examples of doubling transformations
applied to either discrete quantities (blue dot arrays’ numerosities) or continuous quantities (blue
bars’ lengths). Animated sequences presented on computer screens showed an initial quantity that
was then covered by an occluder; while the initial quantity was hidden, children heard a sound indi-
cating that a transformation was taking place (a rapid series of tones increasing in pitch). Then the
occluder was removed, and the resulting quantity (double the magnitude of the initial quantity)
was revealed. During test trials, children saw novel quantities that were then occluded, followed by
the sound that had previously accompanied the doubling transformation. Children compared the
resulting (never presented) quantity with a final quantity (an array of red dots or a red bar).

Method

Participants
A total of 30 first graders and 34 kindergartners recruited from Massachusetts schools participated

in the spring of their school year. Stimuli were presented in the form of an animated computer game
on a Macintosh iBook laptop computer with a screen resolution of 1024 by 768 pixels. There were two
conditions, with 14 first graders (mean age 7 years 1 month) and 17 kindergartners (mean age 6 years
3 months) participating in the continuous condition and 16 first graders (mean age 6 years 11 months)
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and 17 kindergartners (mean age 6 years 2 months) participating in the discrete condition (the length
of the testing session precluded a within-participants design). Participants completed a comparison
task first to acclimate them to the procedure, and the doubling task followed the comparison task.

Procedure
For all tasks in Experiments 1 and 2. Children observed the outcomes of four transformations during the
example trials and received corrective feedback following their guesses during the four practice trials.
During test trials, children never saw the outcomes of the transformations; they only heard a sound
indicating the transformation’s occurrence. Children judged which magnitude was greater while only
the red magnitude was visible. Stimulus presentations were brief so that children could not count dots
or measure lengths, and red and blue bars were presented in different positions and orientations. Blue
dots were always 10 pixels in diameter, and red dots were always 3 pixels in diameter. Bars varied
only in length and not in width so that children would attend to transformations of length rather than
assessing area (Spence, 2004). Ratios of the compared bars’ lengths (or sets’ numerosities) could have
one of three values: 4:7 (five trials), 4:6 (six trials), or 4:5 (five trials), with the red bar longer (or the
red set larger) on half of the trials.

Continuous comparison task. Children first completed four practice trials to introduce the elements of
the task. In the first two practice trials, a blue rectangular bar appeared in the top half of the computer
screen, followed by a red rectangular bar in the central region of the bottom part of the screen. The
blue bar was rotated up to 45 degrees in either direction from the horizontal, and the red bar was al-
ways horizontally oriented. Children were asked to judge which bar was longer. In the second pair of
practice trials, the blue bar appeared and was covered after 2.5 s with a large occluding rectangle, fill-
ing the top portion of the screen. The red bar appeared, and children judged which one was longer
(with only the red bar visible during the choice). Children received meaningful feedback during the
four practice trials. A total of 16 comparison test trials (Fig. 1A) followed the procedure of the final
practice trials except that children received only mildly positive feedback. Lengths ranged from 60
to 240 pixel-widths.

Continuous doubling task. Children were presented with four example trials in which there was no
task. They saw a blue bar appear on the top half of the screen, and this bar was then covered by a rect-
angular occluder after 2.5 s as in the comparison task. A sound was heard (a rapid sequence of notes
rising in pitch) while the blue bar remained hidden, and then the occluder disappeared to reveal a
transformed blue bar twice the length of the original. Four practice trials followed; the blue bar ap-
peared and was covered by the occluder, the transforming sound was heard, and a red bar appeared
at the bottom of the screen. Children were asked which was longer—the new blue bar or the red bar?
In the final step, the occluder was removed to reveal the transformed blue bar; this allowed children to
check their judgment concerning the relative lengths of the transformed blue bar and the red bar. A
total of 16 test trials followed (Fig. 1B). In the test trials, the transformed blue bar was never revealed
and children were given mildly positive feedback regardless of their response. Children judged which
bar was longer while only the red bar was visible. The final comparisons (between the lengths of the
never presented transformed blue bar and the red bar) were matched to the comparisons made in the
continuous comparison task, so the initial blue bars in the continuous doubling task were necessarily
half the lengths of those presented during the comparison task. Lengths ranged from 30 to 240 pixels.

Discrete comparison task. This task followed the procedure of the continuous comparison task with
sets of dots rather than bars. Blue dots appeared in an invisible rectangular envelope (512 by 192 pix-
els) in the top half of the screen, and red dots appeared in a square region outlined in red in the central
lower region of the screen (192 by 192 pixel-widths). Sets’ numerosities ranged from 12 to 80 dots.
Test trials are depicted in Fig. 2A.

Discrete doubling task. This task followed the procedure of the continuous doubling task with sets of
dots rather than bars. Sets of blue dots appeared on the top half of the screen in an invisible rectan-
gular envelope (256 by 192 pixel-widths), which was then covered by a rectangular occluder. When
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the occluder disappeared to reveal a transformed blue set with twice the number of dots as in the ini-
tial set (on initial example trials only), the doubled set appeared in a 512 by 192-pixel invisible rect-
angular envelope so that density remained constant before and after the transformation while area
varied. Red dots were always presented within the same small square region clearly delineated in
red such that the area covered by the red array stayed roughly constant with changes in red set num-
erosity, although red set density did vary with numerosity. The final comparisons (between the num-
erosities of the never presented transformed blue set and the red set) were matched to the
comparisons made in the discrete comparison task, so the initial blue sets in the discrete doubling task
necessarily contained half as many dots as those presented in the comparison task. Set sizes ranged
from 6 to 80 dots. Test trials are depicted in Fig. 2B.

Results

An analysis of variance (ANOVA) examined the effects of between-participants factors age and con-
dition (continuous or discrete) and within-participants factors operation (comparison or doubling) and
ratio (4:7, 4:6, or 4:5) on the percentage correct in the test trials (i.e., which was larger: the hidden
blue quantity or the visible comparison red quantity?). There was no main effect for age, and age
did not interact with any other variable. Accuracy scores for the continuous and discrete comparison
and doubling tasks, collapsed across both age groups, are shown in Fig. 3. Children performed above
chance for both operations, in both conditions, at every ratio (p < .05). For the three ratios in the con-
tinuous comparison task (4:7, 4:6, and 4:5), children were 90%, 91%, and 81% correct, respectively
(SDs = 19, 17, and 16, respectively); for the continuous doubling task, the corresponding values were
82%, 75%, and 65% correct (SDs = 21, 15, and 22); for the discrete comparison task, the corresponding

Fig. 1. Schematic depictions of procedures for the continuous comparison task (Experiments 1 and 2), continuous doubling task
(Experiment 1), and continuous halving task (Experiment 2). (Panels are not drawn to scale.)
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values were 82%, 77%, and 60% correct (SDs = 17, 18, and 16); and for the discrete doubling task, the
corresponding values were 70%, 72%, and 65% correct (SDs = 15, 16, and 16).

There was a main effect of operation, F(1,60) = 19.85, p < .0005; accuracy was greater for compar-
ison than for doubling. There was a main effect of ratio, F(2,120) = 27.51, p < .0005, with a significant
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Fig. 3. Children’s accuracy for the continuous and discrete comparison and doubling tasks of Experiment 1 (collapsed across
kindergartners and first graders). Error bars represent standard errors of the mean.

Fig. 2. Schematic depictions of procedures for the discrete comparison task (Experiments 1 and 2), discrete doubling task
(Experiment 1), and discrete halving task (Experiment 2). (Panels are not drawn to scale.)
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linear trend, F(1,60) = 42.94, p < .0005. There was also a main effect of the between-participants factor
condition, F(1,60) = 20.24, p < .0005; accuracy was greater in the continuous condition than in the dis-
crete condition. These main effects must be interpreted in light of the interaction of operation and
condition, F(1,60) = 6.47, p < .05. That is, the main effects were due to children’s high accuracy for
the continuous comparison task; the discrete comparison and doubling tasks did not differ from each
other, t(32) = 1.57, p > .05, and the continuous and discrete doubling tasks did not differ from each
other, t(62) = 1.93, p > .05. Of course, it is not surprising that accuracy was highest for the continuous
comparison task; only in this task were the red and blue stimuli being compared identical except for
length (the dimension being compared) and orientation. The dot arrays in the discrete comparison
task differed dramatically in overall size, shape, and dot dimensions. Finally, there was a significant
three-way interaction of condition, operation, and ratio, F(2,120) = 5.07, p < .01, due to relatively
low accuracy levels on the 4:7 ratio trials in the discrete doubling task.

Discussion

Children successfully chose which stimulus (red or mentally transformed blue) was larger on the
doubling tasks in both the continuous and discrete conditions, and the two age groups did not perform
differently. Just as in previous studies of additive operations subserved by analog magnitude number
representations, performance was as accurate on the doubling task as on a comparison task. Perfor-
mance was above chance for every task at every ratio tested, and accuracy was dependent on the ratio
of the quantities being compared, consistent with the signature of the analog magnitude system. Chil-
dren’s overall accuracy was equally high for the doubling tasks in the discrete condition (the transfor-
mation of an initial set’s numerosity) and in the continuous condition (the transformation of an initial
bar’s length).

These data are consistent with children’s abstracting the common ratio relation between the two
quantities during the practice trials and then transforming the initial quantity during each test trial
according to that ratio (approximately twice as large). However, the demonstrated transformation
was equivalent to adding another instance of the initial quantity (‘‘ADDANOTHER”). Such an additive strat-
egy may be especially likely in the case of length; our finding that the continuous comparison of
lengths was by far the easiest task suggests that children can easily create a working memory repre-
sentation of the length of the blue bar and compare it with the length of a red bar in a different posi-
tion and orientation. Children’s performance patterns in a wide variety of quantitative tasks suggest
that children tend to apply additive rules (e.g., repeated addition), rather than multiplicative rules, un-
til relatively late in elementary school (Ginsburg, 1977; Resnick, 1992). This tendency can occur even
when additive rules lead to incorrect results, but in the current study both additive and multiplicative
interpretations were consistent with the transformations that children observed.

If children are only able to make use of additive transformations of analog magnitude representa-
tions prior to instruction on symbolic multiplication and division, they might succeed at the doubling
task of Experiment 1 but fail at a similar task that does not lend itself to additive strategies. To test this
hypothesis, children were tested on an analogous halving task in Experiment 2. Although repeated
addition is one way to produce the effect of doubling, there is no comparable additive operation for
halving (because subtracting one half requires identifying the half to be subtracted).

Experiment 2: Continuous and discrete halving

In the second experiment, kindergartners and first graders completed versions of the tasks of
Experiment 1 in which halving transformations replaced doubling transformations.

Method

Participants
A total of 27 first graders and 47 kindergartners recruited from Massachusetts schools participated

in the spring of their school year. There were two between-participants conditions, with 14 first
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graders (mean age 7 years 1 month) and 22 kindergartners (mean age 6 years 2 months) participating
in the continuous condition and 13 first graders (mean age 6 years 11 months) and 25 kindergartners
(mean age 6 years 1 month) participating in the discrete condition. As in Experiment 1, stimuli were
presented in the form of a computer game, and all participants completed the comparison task first,
followed by the halving task.

Procedure
Continuous condition. The continuous comparison procedure of Experiment 2 was identical to the con-
tinuous comparison procedure of Experiment 1 (Fig. 1A). The continuous halving task procedure
(Fig. 1C) was just like the continuous doubling task procedure (four demonstration trials, four practice
trials, and 16 test trials) except that the sound indicating that a hidden transformation was taking
place was now a series of notes of falling pitch, rather than rising pitch, and the transformed blue
bar was half its original length. Initial blue bar lengths in the continuous halving task were matched
to those presented in the continuous comparison task. Bars’ lengths ranged from 30 to 240 pixel-
widths.

Discrete condition. The discrete comparison task (Fig. 2A) was identical to that described in Experi-
ment 1. The discrete halving task procedure (Fig. 2C) was identical to the discrete doubling task pro-
cedure except that the sound was now a series of notes of falling pitch, rather than rising pitch, and the
transformed blue set was half its original numerosity. The presented initial blue sets in the discrete
halving task contained as many dots as the blue sets presented during the comparison task. Set sizes
ranged from 6 to 80 dots.

Results

An ANOVA examined the effects of between-participants factors age and condition (continuous or
discrete) and within-participants factors operation (comparison or halving) and ratio (4:7, 4:6, or 4:5)
on accuracy on the test trials. As in Experiment 1, there were no effects of age. Accuracy scores for
the continuous and discrete comparison and halving tasks, collapsed across the two age groups, are
shown in Fig. 4. Children performed above chance for both operations, in both conditions, at every ratio
(p < .05). For the three ratios in the continuous comparison task (4:7, 4:6, and 4:5), children were 97%,
95%, and 89% correct, respectively (SDs = 11, 11, and 15, respectively); for the continuous halving task,
the corresponding values were 75%, 58%, and 62% correct (SDs = 22, 20, and 17); for the discrete

Experiment 2
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Fig. 4. Children’s accuracy for the continuous and discrete comparison and halving tasks of Experiment 2 (collapsed across
kindergartners and first graders). Error bars represent standard errors of the mean.
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comparison task, the corresponding values were 81%, 75%, and 68% correct (SDs = 16, 19, and 19); and
for the discrete halving task, the corresponding valueswere 69%, 65%, and 58% correct (SDs = 21, 18, and
23).

Therewas amain effect of operation, F(1,70) = 109.86, p < .0001; accuracywas greater for comparison
than for halving. There was a main effect of ratio, F(2,140) = 16.25, p < .0005, with a significant linear
trend, F(1,70) = 30.46, p < .0005. There was also an effect of the between-participants factor condition,
F(1,70) = 17.34, p < .0005; accuracy was greater in the continuous condition than in the discrete condi-
tion. A significant interaction of operation and condition, F(1,70) = 20.62, p < .0005, suggested that the
main effects were due in part to children’s high accuracy for the continuous comparison task, which re-
quired comparing the lengths of identical stimuli that differed only in color, orientation, and position. All
other comparisons required transforming theblue stimuli held inworkingmemory (halving them) and, in
the case of the discrete condition, comparing the set sizes of arrays that differed dramatically (in dot size,
array size, and shape). Accuracy levels on the discrete comparison and halving tasks differed as well,
t(37) = 4.03, p < .005 (corrected formultiple comparisons). Accuracy levels on the continuous and discrete
halving tasks did not differ from each other, t(72) = 0.35, p > .05 (uncorrected). There was a significant
three-way interaction of condition, operation, and ratio, F(2,140) = 3.41, p < .05, due to relatively low
accuracy levels on the 4:6 ratio trials in the continuous halving task.

Discussion

Children chose the larger quantity with better than chance accuracy for the comparison tasks and
the halving tasks in both the continuous and discrete conditions at every ratio tested. Accuracy de-
creased as the ratio of the compared quantities approached 1, consistent with the signature of the ana-
log magnitude system. Kindergartners and first graders did not perform differently. These results—
ratio sensitivity, no age effect, and no difference between continuous and discrete halving—are
remarkably convergent with the doubling results of Experiment 1. But before we discuss the implica-
tions of children’s success at doubling and halving both discrete and continuous quantities, we must
explore other strategies that children may have adopted in these tasks. Might children have succeeded
without carrying out any computation on the hidden quantity? Each alternative we explored makes
specific predictions regarding details of the data; we tested for the use of alternative strategies by test-
ing those predictions as follows.

Alternative Strategy 1: Ignore the transformation altogether
Did children simply compare the initially presented blue magnitude with the red magnitude, ignor-

ing the invisible transformation of the blue magnitude? This possibility is especially important to con-
sider because comparison did precede doubling or halving for all participants so as to accustom
children to the elements of the doubling and halving tasks. Such a strategy would result in chance per-
formance overall on the doubling task if children applied it consistently because the presented blue
quantity (before it was invisibly ‘‘doubled”) was always smaller than the red quantity. Therefore, such
a strategy would lead to 100% (or very high) accuracy on the trials with a correct answer of ‘‘red” and
0% (or very low) accuracy on trials with a correct answer of ‘‘blue.” Because children performed above
chance overall, they did not rely entirely on a strategy involving comparing the initial blue quantity
with the red quantity. The data suggest that children did not use this strategy even on a subset of
the presented trials on the doubling task; if they had done so, they would have achieved higher levels
of accuracy on the trials with a correct answer of ‘‘red” than on those with a correct answer of ‘‘blue.”
This is not the case for the continuous doubling task (answer = red trials, 74%; answer = blue trials,
74%) or for the discrete doubling task (answer = red trials, 73%; answer = blue trials, 65%),
t(32) = 1.25, p > .05.

This strategy would also result in chance performance if children applied it consistently in the halv-
ing task because the initially presented blue quantity (before its unseen halving) was always larger
than the red quantity. Because children performed above chance overall, they did not rely entirely
on this strategy. If children had applied the strategy on a subset of the presented trials, they would
have achieved higher levels of accuracy on the trials with a correct answer of ‘‘blue” than on those
with a correct answer of ‘‘red.” This was not the case for the discrete halving task (answer = red trials,
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63%; answer = blue trials, 65%). Thus, children showed no evidence of comparing the initial blue quan-
tity with the final red quantity in the discrete halving task. However, on the continuous halving task,
children were 42% correct for the answer = red trials (not significantly different from chance),
t(35) = 1.65, p > .05, and 88% correct for the answer = blue trials. These accuracy scores were signifi-
cantly different from each other, t(35) = 6.49, p < .0001. Children could not have relied entirely on this
strategy in the continuous halving task (because such reliance would have produced lower overall
accuracy), but the pattern of performance was consistent with the use of a simple comparison strategy
on some trials.

Alternative Strategy 2: Respond based on range analysis
Another strategy could have led to better than chance performance even if children did not base

their choices on the magnitude of the transformed quantity. It is possible that children simply re-
sponded based on the range of values of the red lengths or set numerosities (the magnitude presented
last in every trial). The correct response for the largest red items was always ‘‘red” (these were bigger
than the transformed blue item), and the correct response for the smallest red items was always
‘‘blue” (these were smaller than the transformed blue item). Children have been found to exploit such
a range analysis in previous across-modality approximate subtraction tasks (when subtracting num-
erosities of sound sequences from numerosities of visual sets), albeit not in analogous addition tasks
(Barth et al., 2008). It is especially important to consider this strategy in the current doubling task be-
cause the comparison trials always preceded the doubling trials, and the range of red items was the
same in the comparison and doubling trials. Thus, children had ample opportunity to learn about
the range of magnitudes being presented. If the practice trials taught children to give roughly equal
numbers of ‘‘blue” and ‘‘red” answers, and the comparison trial block exposed them to a particular
range of red set numerosities or red bar lengths, children might well have made use of this strategy.
Four distinct arguments are relevant to our consideration of children’s use of this range-based
strategy.

First, if children learned about the range of red magnitudes from the initial comparison trials, we
should expect the use of this range-based strategy to lead to two specific patterns of performance be-
cause the red numerosities or lengths from the comparison blocks were identical to those for the dou-
bling blocks, whereas the red numerosities or lengths of the halving blocks were smaller than those for
the preceding comparison blocks. If children relied on this strategy, they should be more accurate for
doubling than for halving. There was no accuracy difference between the discrete doubling and dis-
crete halving tasks, t(69) = 1.94, p > .05 (uncorrected), but continuous doubling performance was bet-
ter than continuous halving performance, t(65) = 2.73, p < .05 (corrected for multiple comparisons).
Thus, this analysis militates against a range-based strategy in the discrete tasks but suggests such a
strategy might have played a role in the continuous tasks.

Second, if children did make use of a range-based strategy, halving tasks should produce a pattern
of bias toward blue responses. This was not the case for the discrete halving task, but for the contin-
uous halving task children did perform better for the answer = blue trials than for the answer = red tri-
als (88% correct vs. 42% correct), t(35) = 6.49, p < .0001. Therefore, children’s performance patterns for
the continuous tasks appear consistent so far with the use of a strategy based on the information
about the range of red lengths gathered in the initial comparison block, but there is no evidence of
such a strategy in the case of the discrete tasks.

Third, if children gathered information about the range of red magnitudes from the halving or dou-
bling blocks themselves, rather than from the preceding comparison blocks, they should perform bet-
ter on the second halves of the blocks than on the first halves. This was not the case for any task. For
discrete doubling and discrete halving, there was no difference in performance from the first half of
the task to the second half, t(32) = 0.58, p > .05, and t(37) = 0.13, p > .05 (uncorrected), respectively.
For the continuous doubling and halving tasks, performance was better on the first half than on the
second half, t(30) = 2.14, p < .05, and t(35) = 2.42, p < .03 (uncorrected), respectively.

Fourth, if children pursued this range-based strategy, they should perform better on trials contain-
ing extreme red magnitudes than on trials containing intermediate red magnitudes when comparison
ratios are equated across the two trial types. Better performance on the trials containing extreme red
magnitudes would indicate that children were likely influenced by a strategy based on the magnitude
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of the final red item, although it does not constitute evidence of children’s complete reliance on such a
strategy. For both continuous and discrete doubling, accuracy was higher on the trial subsets contain-
ing red magnitudes at the extreme ends of the range, t(30) = 4.0, p < .0004 (uncorrected), and
t(32) = 8.28, p < .0001 (uncorrected), respectively. In contrast, for both continuous and discrete halv-
ing, accuracy was no higher for trial subsets containing extreme red magnitudes, t(35) = 1.96,
p > .05 (uncorrected), and t(37) = 1.57, p > .05 (uncorrected). This finding makes sense in light of the
fact that in the doubling tasks, red magnitudes were identical in the doubling block and the preceding
comparison block such that range information gathered during the comparison block would remain
relevant during the doubling block. It may be that the incorporation of comparison trials designed
in this manner obscured evidence of children’s ability to respond appropriately to the doubling trans-
formations by encouraging them to exploit available range-based information. In contrast, in the halv-
ing tasks, red magnitudes shifted dramatically from the comparison block to the halving block.

Thus, these analyses militate against either alternative strategy in the discrete halving task. The
simple strategy of comparing the initial blue quantity with the final red quantity, ignoring the trans-
formation, may have played some role in children’s performance on the continuous halving task but
not on either of the doubling tasks. Furthermore, the analyses provide some evidence that children
could have made use of range-based alternative strategies in the doubling tasks (especially continuous
doubling), but there was no hint of reliance on these strategies for the halving tasks.

General discussion

We sought to answer two questions. First, can analog magnitude representations support reason-
ing about multiplicative transformations of discrete quantities in young children prior to formal
instruction in relevant symbolic algorithms? Second, are multiplicative computations evident earlier,
or more robustly, for continuous quantities than for discrete quantities?

Our findings suggest that children’s analog magnitude representations of discrete numerical quan-
tity can indeed enter into halving, and perhaps doubling, operations. Although success at a doubling
task like that of Experiment 1 could be explained in terms of a tendency to represent the transforma-
tion in terms of addition (‘‘initial quantity + initial quantity” rather than ‘‘initial quantity doubled”),
children’s unambiguous success at the discrete halving task of Experiment 2 cannot be explained in
an analogous manner (because subtracting one half requires first halving the initial quantity). There-
fore, these findings are consistent with the idea that children can represent an approximate halving
operation and can apply this operation to representations of discrete numerosity before they are
taught symbolic multiplication, division, or fraction notation. Children apparently succeeded at recog-
nizing the nature of the halving transformation based on a small number of examples, applying that
transformation to novel discrete sets so as to halve themmentally, and comparing the resulting (never
presented) numerosity with a third set. Overall, the results of Experiment 2 provide evidence of non-
verbal approximate halving of discrete, and probably also continuous, quantities.

Children’s accuracy depended on the ratio of the compared quantities, consistent with the idea that
children made use of analog magnitude representations of quantity in performing the tasks. Follow-up
analyses testing for the use of alternative strategies showed that these data provide clear evidence of
children’s ability to apply halving transformations to sets of discrete elements. The evidence is some-
what less clear for the continuous quantities tested here (lengths). Thus, we find no evidence that chil-
dren are more sensitive to multiplicative transformations of continuous magnitude. Children
performed equally well for both types of tasks, and patterns of performance for the discrete tasks con-
stitute stronger evidence for children’s ability to reason about multiplicative transformations than do
patterns of performance for the continuous tasks. Whether younger children might be better able to
double or halve continuous quantities than discrete quantities is a topic for further research.

What multiplicative computations might children have been carrying out?

It is important to acknowledge that these data provide no evidence that children can multiply or
divide one analog magnitude (e.g., approximately 15) by another (e.g., approximately 2). Although
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we have designated the transformations ‘‘doubling” and ‘‘halving”, we do not mean to imply that rep-
resentations of the number 2 enter into the computation. We have no evidence concerning exactly
what computation children were carrying out; after all, it is possible they were multiplying and divid-
ing by 2. But it is also possible that they were computing ratios and then creating a representation of a
new quantity that is a constant ratio to each standard. Whichever computation they were using, espe-
cially in the halving task, it is a multiplicative one.

Potential limitations of these studies

This approach to investigating children’s intuitions about multiplicative transformations of quan-
tity required the use of a between-participants design due to the length of the test session, the number
of conditions tested, and the young age of the participants. Because groups were formed by semiran-
dom assignment rather than being equated with respect to sex, intelligence, attentional resources, or
other variables, it is possible that between-group variations may have influenced the results. In future
studies, it would be ideal to employ within-participants tests of both continuous and discrete quan-
tities and within-participants tests involving halving and doubling transformations. In addition, we
chose to design the tasks such that some aspects of the stimuli were balanced across doubling and
halving conditions (e.g., the overall stimulus magnitudes employed); this necessarily meant that other
aspects could not be equated (e.g., the initially presented magnitudes) (see Figs. 1 and 2 and procedure
sections). Ideally, future studies would explore possible stimulus magnitude effects that may have re-
sulted from this design.

Potential relation to the later construction of rational number concepts

Both articulated and intuitive concepts of division play an important role in children’s eventual
construction of an understanding of rational number. An articulated model of fractions based on divi-
sion is strongly related to middle school students’ understanding of other aspects of rational number
(Smith et al., 2005), and many researchers suggest that early intuitions about transformations of con-
tinuous physical amounts support later fraction learning (Confrey, 1994; Moss & Case, 1999; Resnick &
Singer, 1993). But children’s great difficulty in understanding fractions emphasizes the conceptual dis-
tance between intuitions about physical quantities and formal reasoning about rational numbers.
There may be no clear path from reasoning about amounts in the world to reasoning about numbers
as mathematical entities, and we do not yet possess a full description of the intermediate steps that
children take along this path.

Many researchers have argued that learning about fractions requires conceptual change (Gelman,
1991; Gelman & Meck, 1992; Smith et al., 2005) rather than the enrichment of existing knowledge
about numbers and quantities (Mix et al., 1999; Sophian, Garyantes, & Chang, 1997). On the former
view, making sense of rational number is especially difficult for children because their early concept
of numbers—that numbers are what you get when you count—must be changed fundamentally when
they are confronted with fractions (Gelman & Meck, 1992; Hartnett & Gelman, 1998; Smith et al.,
2005). To understand rational number, children must come to form a new concept of number as infi-
nitely divisible.

Physical continuous quantities have often been supposed to provide a convenient model for chil-
dren’s thinking about repeated division because it seems plausible that continuous models of these
quantities might be perceptually given. However, a recent clinical interview study demonstrated that
this aspect of children’s thinking about physical quantity might itself be painstakingly constructed.
Despite the apparent perceptual availability of the continuity of matter and length, the study found
that many children between 8 and 12 years of age do not yet possess a continuous model of matter
or (in a pilot study) length (Smith et al., 2005). Such an understanding may be crucial to the construc-
tion of an understanding of rational number; all children who showed evidence of a discontinuous
model of matter also did not yet understand that numbers could be divided infinitely, and all children
who understood the infinite divisibility of number also showed evidence of a continuous model of
matter (Smith et al., 2005).
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Early intuitions about transformations of continuous physical amounts, therefore, might not pro-
vide children with the conceptual tools they need to build rational number concepts. A concept of re-
peated division differentiated from subtraction, in the context of reasoning about numbers and
physical quantities in verbal tasks, appears to be an important component of older children’s construc-
tion of concepts of rational number (Smith et al., 2005), yet an understanding of differentiated division
in such contexts is relatively late emerging. The current study shows that even much younger children
already appear to possess the ability to apply simple multiplicative transformations to numerical
quantities (sets of discrete elements). It is possible that the early nonverbal understanding of halving
computations operating over analog magnitude representations of discrete quantity may serve as one
of the building blocks of the later understandings of division that are crucial to children’s understand-
ing of fractions.

We did not find evidence that intuitive reasoning about multiplicative transformations of contin-
uous quantities preceded such reasoning in the context of discrete quantity, although in the verbally
based clinical interview study described above, children’s patterns of response suggested that an
understanding of the infinite divisibility of matter appeared to precede that of number (even though
the acquisition of concepts of the repeated division of numbers and the repeated division of matter
progressed largely in parallel) (Smith et al., 2005). It may be that early concepts of multiplicative
change develop in the context of continuous quantities first (Mix, Huttenlocher, & Levine, 2002). It
is also possible that the developmental patterns observed in studies of young children’s nonverbal rea-
soning about sets and amounts will not parallel those observed in studies of older children’s verbal
reasoning about numbers and matter. Additional studies are needed to distinguish between these pos-
sibilities, and to determine whether the capabilities demonstrated by children in these experiments
extend to other simple forms of multiplicative transformations beyond halving and doubling (or even
to true computations of multiplication and division). Future work will explore the ways in which chil-
dren’s later steps on the path toward rational number concepts might build on their early ability to
perform computations of halving and doubling over analog magnitude representations of discrete
quantity.

Acknowledgments

The authors thank Lacey Beckmann for assistance with data collection, and the participating
schools, teachers, parents, and children for making this work possible. This work was supported by
a National Science Foundation grant (REC-0087721) to S. Carey and E. Spelke, by a National Academy
of Education/Spencer Foundation postdoctoral fellowship to H. Barth, and by a Wesleyan University
project grant to H. Barth.

References

Anderson, N., & Cuneo, D. O. (1978). The height + width rule in children’s judgments of quantity. Journal of Experimental
Psychology: General, 107, 335–378.

Balci, F., & Gallistel, C. R. (2006). Cross-domain transfer of quantitative discriminations: Is it all a matter of proportion?
Psychonomic Bulletin and Review, 13, 636–642.

Barth, H. (2002). Numerical cognition in adults: Representation and manipulation of nonsymbolic quantities. Unpublished doctoral
dissertation, Massachusetts Institute of Technology.

Barth, H., Beckmann, L., & Spelke, E. (2008). Nonsymbolic, approximate arithmetic in children: Evidence for abstract addition
prior to instruction. Developmental Psychology, 44, 1466–1477.

Barth, H., La Mont, K., Lipton, J., & Spelke, E. (2005). Abstract number and arithmetic in preschool children. Proceedings of the
National Academy of Sciences of the United States of America, 102, 14116–14121.

Boyer, T., Levine, S., & Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong.
Developmental Psychology, 44, 1478–1490.

Cantlon, J., & Brannon, E. (2007). Basic math in monkeys and college students. PLoS Biology, 5, 2912–2919.
Church, R. M., & Broadbent, H. A. (1990). Alternative representations of time, number, and rate. Cognition, 37,

55–81.
Cohen, L., Dehaene, S., Chochon, F., Lehéricy, S., & Naccache, L. (2000). Language and calculation within the parietal lobe: A

combined cognitive, anatomical, and fMRI study. Neuropsychologia, 38, 1426–1440.
Confrey, J. (1994). Splitting, similarity, and the rate of change: New approaches to multiplication and exponential functions. In

G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 293–332). Albany:
State University of New York Press.

H. Barth et al. / Journal of Experimental Child Psychology 103 (2009) 441–454 453



Cordes, S., & Brannon, E. (2008). The difficulties of representing continuous extent in infancy: Using number is just easier. Child
Development, 79, 476–489.

Dehaene, S. (1997). The number sense. New York: Oxford University Press.
Flombaum, J. I., Junge, J. A., & Hauser, M. (2005). Rhesus monkeys (Macaca mulatta) spontaneously compute addition operations

over large numbers. Cognition, 97, 315–325.
Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.
Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4,

59–65.
Gallistel, C. R., & Gelman, R. (2005). Mathematical cognition. In K. Holyoak & R. Morrison (Eds.), The Cambridge handbook of

thinking and reasoning (pp. 559–588). Cambridge, UK: Cambridge University Press.
Gallistel, C. R., Mark, T., King, A., & Latham, P. (2001). The rat approximates an ideal detector of changes in rates of reward:

Implications for the law of effect. Journal of Experimental Psychology: Animal Behavior Processes, 27, 354–372.
Gelman, R. (1991). Epigenetic foundations of knowledge structures: Initial and transcendent constructions. In S. Carey & R.

Gelman (Eds.), The epigenesis of mind: Essays on biology and cognition (pp. 293–322). Hillsdale, NJ: Lawrence Erlbaum.
Gelman, R., & Meck, B. (1992). Early principles aid initial but not later conceptions of number. In J. Bideaud, C. Meljac, & J.-P.

Fischer (Eds.), Pathways to number: Children’s developing numerical abilities (pp. 171–189). Hillsdale, NJ: Lawrence Erlbaum.
Gigerenzer, G., & Richter, H. (1990). Context effects and their interaction with development: Area judgments. Cognitive

Development, 5, 235–264.
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447, 589–592.
Ginsburg, H. (1977). Children’s arithmetic: The learning process. New York: Van Nostrand.
Hartnett, P., & Gelman, R. (1998). Early understandings of number: Paths or barriers to the construction of new understandings?

Learning and Instruction, 8, 341–374.
Jeong, Y., Levine, S., & Huttenlocher, J. (2007). The development of proportional reasoning: Continuous versus discrete

quantities. Journal of Cognition and Development, 8, 237–256.
Kakade, S., & Dayan, P. (2002). Acquisition and extinction in autoshaping. Psychological Review, 109, 533–544.
Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems.

Neuropsychologia, 41, 1942–1958.
Leon, M., & Gallistel, C. R. (1998). Self-stimulating rats combine subjective reward magnitude and subjective reward rate

multiplicatively. Journal of Experimental Psychology: Animal Behavior Processes, 24, 265–277.
McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by human infants. Psychological Science, 15, 776–781.
McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18, 740–745.
Mix, K., Huttenlocher, J., & Levine, S. (2002). Quantitative development in infancy and early childhood. New York: Oxford

University Press.
Mix, K., Levine, S., & Huttenlocher, J. (1999). Early fraction calculation ability. Developmental Psychology, 35, 164–174.
Moss, J., & Case, R. (1999). Developing children’s understanding of rational numbers: A new model and an experimental

curriculum. Journal for Research in Mathematics and Education, 30, 122–147.
Resnick, L. (1992). From protoquantities to operators: Building mathematical competence on a foundation of everyday

knowledge. In G. Leinhardt, R. Putnum, & R. Hattrup (Eds.), Analyses of arithmetic for mathematics teachers (pp. 373–429).
Hillsdale, NJ: Lawrence Erlbaum.

Resnick, L., & Singer, J. (1993). Protoquantitative origins of ratio reasoning. In T. Carpenter, E. Fennema, & T. Romberg (Eds.),
Rational numbers: An integration of research (pp. 107–130). Hillsdale, NJ: Lawrence Erlbaum.

Schlottmann, A. (2001). Children’s probability intuitions: Understanding the expected value of complex gambles. Child
Development, 72, 103–122.

Schlottmann, A., & Anderson, N. (1994). Children’s judgments of expected value. Developmental Psychology, 30, 56–66.
Schlottmann, A., & Tring, J. (2005). How children reason about gains and losses: Framing effects in judgement and choice. Swiss

Journal of Psychology, 64, 153–171.
Slaughter, V., Kamppi, D., & Paynter, J. (2006). Toddler subtraction with large sets: Further evidence for an analog-magnitude

representation of number. Developmental Science, 9, 33–39.
Smith, C., Solomon, G., & Carey, S. (2005). Never getting to zero: Elementary school students’ understanding of the infinite

divisibility of number and matter. Cognitive Psychology, 51, 101–140.
Sophian, C., Garyantes, D., & Chang, C. (1997). When three is less than two: Early developments in children’s understanding of

fractional quantities. Developmental Psychology, 33, 731–744.
Spence, I. (2004). The apparent and effective dimensionality of representations of objects. Human Factors, 46, 738–747.
Wilkening, F. (1982). Children’s knowledge about time, distance, and velocity interrelations. In W. Friedman (Ed.), The

developmental psychology of time (pp. 87–112). New York: Academic Press.
Wilkening, F., & Anderson, N. (1991). Representation and diagnosis of knowledge structures in developmental psychology. In N.

Anderson (Ed.). Contributions to information integration theory (Vol. 3, pp. 45–80). Hillsdale, NJ: Lawrence Erlbaum.
Xu, F., & Spelke, E. (2000). Large number discrimination by human infants. Cognition, 74, B1–B11.
Yang, T., & Shadlen, M. (2007). Probabilistic reasoning by neurons. Nature, 447, 1075–1080.

454 H. Barth et al. / Journal of Experimental Child Psychology 103 (2009) 441–454


	Children’s multiplicative transformations of discrete and continuous quantities
	Introduction
	Experiment 1: Continuous and discrete doubling
	Method
	Participants
	Procedure
	For all tasks in Experiments 1 and 2
	Continuous comparison task
	Continuous doubling task
	Discrete comparison task
	Discrete doubling task


	Results
	Discussion

	Experiment 2: Continuous and discrete halving
	Method
	Participants
	Procedure
	Continuous condition
	Discrete condition


	Results
	Discussion
	Alternative Strategy 1: Ignore the transformation altogether
	Alternative Strategy 2: Respond based on range analysis


	General discussion
	What multiplicative computations might children have been carrying out?
	Potential limitations of these studies
	Potential relation to the later construction of rational number concepts

	Acknowledgments
	References


