
Cognition 131 (2014) 92–107
Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier .com/ locate/COGNIT
Brief non-symbolic, approximate number practice enhances
subsequent exact symbolic arithmetic in children
0010-0277/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cognition.2013.12.007

⇑ Corresponding author. Address: Department of Psychology, Univer-
sity of Illinois at Urbana–Champaign, 621 Psychology Building, 603 East
Daniel Street, Champaign, IL 61820, United States. Tel.: +1 217 300 0382.

E-mail address: dchyde@illinois.edu (D.C. Hyde).
1 Equal contributions.
Daniel C. Hyde a,⇑,1, Saeeda Khanum b,c,1, Elizabeth S. Spelke c

a Brain and Cognitive Development Lab, Department of Psychology, University of Illinois at Urbana–Champaign, United States
b National Institute of Psychology, Quaid-i-Azam University, Islamabad, Pakistan
c Laboratory for Developmental Studies, Department of Psychology, Harvard University, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 February 2013
Revised 5 November 2013
Accepted 19 December 2013

Keywords:
Numerical cognition
Symbols
Mathematics
Approximate number system
Children
Training
Recent research reveals a link between individual differences in mathematics achievement
and performance on tasks that activate the approximate number system (ANS): a primitive
cognitive system shared by diverse animal species and by humans of all ages. Here we used
a brief experimental paradigm to test one causal hypothesis suggested by this relationship:
activation of the ANS may enhance children’s performance of symbolic arithmetic. Over 2
experiments, children who briefly practiced tasks that engaged primitive approximate
numerical quantities performed better on subsequent exact, symbolic arithmetic problems
than did children given other tasks involving comparison and manipulation of non-numer-
ical magnitudes (brightness and length). The practice effect appeared specific to mathe-
matics, as no differences between groups were observed on a comparable sentence
completion task. These results move beyond correlational research and provide evidence
that the exercise of non-symbolic numerical processes can enhance children’s performance
of symbolic mathematics.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Recent evidence suggests that symbolic mathematics
arises, in part, from the reuse of a phylogenetically ancient
and ontogenetically primitive cognitive system for making
quantitative judgments and decisions: the approximate
number system (ANS) (e.g. Dehaene, 2005; Hubbard
et al., 2008). To date, however, most of the evidence sug-
gesting a role for the ANS in symbolic mathematics is indi-
rect, and the mechanism(s) driving this relationship are
not well understood (e.g. Bugden & Ansari, 2011; Gilmore,
McCarthy, & Spelke, 2010; Halberda, Mazzocco, & Feigen-
son, 2008; Libertus, Feigenson, & Halberda, 2011; Libertus,
Odic, & Halberda, 2012; Halberda, Ly, Wilmer, Naiman, &
Germine, 2012; Holloway & Ansari, 2009; Lourenco, Bonny,
Fernandez, & Rao, 2012; but see Lyons & Beilock, 2011;
Price, Palmer, Battista, & Ansari, 2012, and Sasanguie, Defe-
ver, Maertens, & Reynvoet, in press). We used an experi-
mental procedure to test the extent to which engaging
the ANS causally enhances subsequent symbolic arithmetic
performance in children learning symbolic mathematics in
school. By systematically manipulating the content of
experimental tasks and analyzing the resulting effects,
we also begin to clarify the specificity of the relationship
between the ANS and symbolic mathematics.

1.1. Primitive number representations

A wealth of research reveals that even infants can dis-
criminate between arrays of visual elements on the basis
of number (e.g. Brannon, 2002; Xu, 2003; Xu & Spelke,
2000; Xu, Spelke, & Goddard, 2005). This ability is present
from birth, persists over the lifespan, and is common to a
wide variety of non-human animals (Feigenson, Dehaene,
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& Spelke, 2004; Izard, Sann, Spelke, & Steri, 2009). Studies
in infants, preschool children, and non-human primates re-
veal that the ANS supports computations as diverse as
numerical discrimination, ordinal comparison, addition,
and subtraction (Brannon & Terrace, 1998; Cantlon & Bran-
non, 2006a, 2006b, 2007; Gilmore et al., 2010; McCrink &
Wynn, 2004). Nevertheless, the ANS represents number
imprecisely: Precision in the mental representations of
number decreases as number increases, and comparison
of two numbers is possible only when they differ by a suf-
ficient ratio (Halberda et al., 2008). The signature ratio-
dependent imprecision of the ANS stands in stark contrast
to the exact meaning and precision associated with the
symbolic number system that is acquired in early child-
hood and is used to learn and perform higher symbolic
mathematical computations (for reviews see Carey, 2009;
Le Corre & Carey, 2007; Le Corre, Van de Walle, Brannon,
& Carey, 2006).

1.2. Links between the ANS and symbolic mathematics

Despite the differences between the approximate num-
ber system and later acquired symbolic numbers and
mathematics, three lines of evidence suggest a functional
link between them. First, tasks involving purely symbolic
numbers and exact arithmetic reveal signatures of non-
symbolic, approximate number representations (see Piaz-
za, 2010 for a review). For example, when adults or older
children are asked to determine which of two symbolic
numbers is larger, their performance depends on the
numerical distance between the numbers to be compared
(e.g. Deheane & Akhavein, 1995; Deheane, Deheane-Lam-
bertz, & Cohen, 1998; Moyer & Landauer, 1967; Temple &
Posner, 1998). Similarly, speed of processing a symbolic
number depends on its numerical distance from a covertly
presented, antecedent numerical prime (e.g. Van Opstal,
Gevers, De Moor, & Verguts, 2008). Finally, in adults and
older children, overlapping parietal brain regions are acti-
vated during processing of number in both symbolic and
non-symbolic number formats, and these regions show
similar release from adaptation to numerical changes inde-
pendent of the format of presentation (symbolic or non-
symbolic) (see Piazza, 2010; Piazza, Pinel, Bihan, & Dehe-
ane, 2007 or Dehaene, Piazza, Pinel, & Cohen, 2003 for
reviews).

Second, individual differences in ANS acuity correlate
with mathematics achievement scores (e.g. Bugden &
Ansari, 2011; DeWind & Brannon, 2012; Halberda et al.,
2008; Libertus et al., 2011, 2012; Bugden & Ansari, 2011;
Gilmore et al., 2010; Halberda et al., 2012; Lourenco
et al., 2012; but see Lyons & Beilock, 2011). Several studies
show concurrent or retrospective correlations between
ANS acuity and mathematics achievement scores (e.g. Hal-
berda et al., 2008; Libertus et al., 2011, 2012; Lourenco
et al., 2012). For example, individual differences in the acu-
ity of approximate, non-symbolic number comparisons,
tested at 14 years, were significantly associated with past
mathematics achievement scores as far back as kindergar-
ten (Halberda et al., 2008). In these correlational studies, it
is unclear whether individual differences in ANS acuity
play a causal role in creating individual differences in
mathematics development, whether symbolic mathemat-
ics development causes changes in ANS acuity (e.g. Piazza,
Pica, Izard, Spelke, & Dehaene, 2013), or whether a third,
mediating factor, such as differences in the facility of oper-
ations on number symbols (e.g. Lyons & Beilock, 2011) or
differences in aspects of executive function (e.g., Fuhs &
McNeil, 2013; Gilmore et al., 2013) explain the relation-
ship. Other studies show that individual differences in
ANS acuity predict future mathematics achievement even
after controlling for variables like general intelligence, ver-
bal abilities, age (e.g. Gilmore et al., 2010; Libertus, Feigen-
son, & Halberda, 2013; Mazzocco, Feigenson, & Halberda,
2011), and even when non-symbolic numerical processing
is measured in infancy (Starr, Libertus, & Brannon, in
press). These studies, however, do not show that individual
differences in ANS acuity cause the later changes in math-
ematics performance, because both the earlier differences
in ANS acuity and the later differences in school mathe-
matics learning could depend on one or more additional
common factors.

Third, recent work suggests that practice with or train-
ing of the ANS, either alone or together with training of
symbolic numbers, leads to gains in symbolic mathematics
performance (Park & Brannon, 2013; Räsänen, Salminen,
Wilson, Aunio, & Dehaene, 2009; Wilson, Dehaene, Dubois,
& Fayol, 2009; Wilson, Dehaene, et al., 2006; Wilson, Rev-
kin, Cohen, Cohen, & Dehaene, 2006). One line of work
showed that children who practiced a variety of symbolic
number skills related to the ANS, including games involv-
ing approximate numerical comparisons, verbal counting,
and mapping numbers to space, showed improvement on
symbolic number tasks (Räsänen et al., 2009; Wilson, Deh-
aene, et al., 2006; Wilson, Revkin, et al., 2006; Wilson et al.,
2009). From this work, however, it is unclear which aspects
of the training – targeted practice with the ANS, explicit
practice mapping the ANS to symbols, symbolic number
practice alone, or something else – contributed to the ob-
served gains. More recently, Park and Brannon (2013)
showed that several days of training on a non-symbolic
approximate numerical addition task led to improvements
in ANS acuity and symbolic mathematics performance in
adults. Individual differences in ANS acuity change,
although modest, correlated with individual differences
in change on the symbolic arithmetic measures. Similar
improvements were not seen in control groups with no
training task, in a non-numerical, factual knowledge-train-
ing task, or in adults who practiced a symbolic number
ordering task. These results provide the strongest evidence
to date of a causal and specialized relationship between
the ANS and symbolic mathematics. However, it is unclear
whether such training depends on a mature mapping be-
tween the symbolic number system and the ANS or
whether such training would also improve symbolic math-
ematics in children who are still acquiring mathematics
skill and ANS precision. It is also unclear whether engage-
ment of the ANS, the cognitive operations involved (includ-
ing comparison and addition), magnitude representations
in general, or something else contributed to the improve-
ments in symbolic arithmetic.
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1.3. Theories of the relationship between the ANS and
mathematics

Several theories have been proposed to explain the link
between the ANS and symbolic mathematics. One view is
that symbolic mathematics depends specifically on the
ANS (e.g. Barth, Beckmann, & Spelke, 2008; Barth, La Mont,
Lipton, & Spelke, 2005; Barth et al., 2006; Dehaene, 1997;
Gilmore et al., 2010; Nieder & Dehaene, 2009; Park & Bran-
non, 2013). In addition to the correlational studies and
training studies cited above, further research consistent
with this position comes from neuropsychological and
trans-cranial magnetic stimulation research showing that
damage or impairment of parietal brain regions thought
to underlie the ANS alters the ability to performance sym-
bolic numerical computations (e.g. Cappelletti, Barth, Fre-
gni, Spelke, & Pascual-Leone, 2007; see Dehaene et al.,
2003 for a review). Similarly, individuals with dyscalculia,
a mathematics-specific learning disability, also show poor
ANS acuity (e.g. Butterworth, 2010; Piazza et al., 2010;
Price, Holloway, Vesterinen, Rasanen, & Ansari, 2007).

Alternatively, the relationship between performance
on tasks involving the ANS and on tests of symbolic
mathematics may reflect a broader underlying relation-
ship between symbolic mathematics and magnitude rep-
resentations (see Lourenco et al., 2012). On this view, a
generalized magnitude system underlies the representa-
tion of all magnitudes regardless of dimension (physical
size, number, duration, etc.) (for reviews see Walsh,
2003 or Lourenco & Longo, 2011). The hypothesis of a
generalized magnitude system is supported by evidence
showing overlap at the behavioral, cortical, and neuronal
level between magnitude domains (e.g. Fias, Lammertyn,
Reynvoet, Dupont, & Orban, 2003; Henik & Tzelgov,
1982; Lourenco & Longo, 2010, 2011; Tudusciuc & Nieder,
2007). Thus, individual differences in the generalized
magnitude system (which includes number), rather than
the ANS specifically, may be linked with individual differ-
ences in symbolic mathematics. Some evidence for this
position comes from research with children showing that
spatial magnitudes promote earlier understanding of
higher numerical concepts (e.g. Mix, Levine, & Huttenl-
ocher, 1999; Gunderson, Ramirez, Beilock, & Levine,
2012). Other evidence with adults shows individual dif-
ferences in both discrimination of spatial extent and dis-
crimination of number correlate with higher mathematics
performance (Lourenco et al., 2012). However, further
analysis of these results revealed that differences in spa-
tial discrimination were uniquely associated with perfor-
mance in the domain of geometry, whereas differences in
numerical discrimination were uniquely associated with
performance of symbolic arithmetic, suggesting a more
specific role for the ANS in mathematical reasoning (Lour-
enco et al., 2012).

On a third family of views, the relationship between the
symbolic and non-symbolic number is mediated by other gen-
eral cognitive operations or abilities common to both tasks
(see Fuhs & McNeil, 2013; Gilmore et al., 2013; Holloway &
Ansari, 2008; Lyons & Beilock, 2009, 2011). Several recent
studies, for example, provide evidence that the relationship
between number comparison and mathematics achievement
could be explained by variation in general inhibitory ability,
rather than ANS acuity (Fuhs & McNeil, 2013; Gilmore et al.,
2013). Other studies have found that domain-general cogni-
tive operations, like the ability to compare one quantity to an-
other, account for a significant portion of individual variation
on non-symbolic number tasks (Holloway & Ansari, 2008). In
one study, for example, the relationship between performance
on a symbolic and a non-symbolic numerical task was medi-
ated by symbol-ordering operations (Lyons & Beilock, 2009).
These studies suggest that the relationship between the ANS
and mathematics may be mediated by more general-purpose
cognitive operations, such as ordering, comparison, or addi-
tion, common to both symbolic and non-symbolic tasks, or
more domain general cognitive abilities such as inhibitory or
executive control.

In sum, previous work shows clear correlations be-
tween performance on tasks that involve the ANS and sym-
bolic mathematics performance (e.g. Gilmore et al., 2010;
Halberda et al., 2008; Libertus et al., 2011; Lourenco
et al., 2012) and some evidence of a causal relationship be-
tween ANS training and symbolic mathematics perfor-
mance in adults (Park & Brannon, 2013). However, the
mechanisms responsible for this relationship remain un-
clear and are highly debated. Furthermore, it is unclear
from previous research if symbolic mathematics is depen-
dent on the ANS in children, without years of associations
between the symbolic and non-symbolic systems. We ad-
dressed these questions by assigning children to partici-
pate in one of several training conditions, each aimed at
engaging a particular mechanism hypothesized to explain
the relationship between the ANS and mathematics, and
then subsequently tested the groups on exact, symbolic
arithmetic performance. If the ANS contributes to the cog-
nitive mechanisms responsible for symbolic arithmetic in
children, then engaging the ANS may enhance children’s
subsequent symbolic arithmetic performance.
2. Experiment 1

2.1. Experiment overview

Children participated in one of four training conditions:
a non-symbolic numerical addition task, a line-length (or
area) addition task, a non-symbolic number comparison
task, or a brightness comparison task (see Fig. 1). Each con-
dition targeted the engagement of a particular non-sym-
bolic magnitude skill hypothesized to play a role in
symbolic mathematics. In all these conditions, children
practiced adding or comparing approximate, non-symbolic
magnitudes. During and immediately after the training
task, children were asked to complete a symbolic addition
test worksheet to assess the effects of the training task on
the speed and accuracy of symbolic mathematics. Finally,
at the end of the experiment, children’s approximate
numerical acuity was measured (Halberda et al., 2008).
2.1.1. Non-symbolic numerical addition
One condition involved numerical addition of non-sym-

bolic dot arrays (see Barth et al., 2005, 2006; Gilmore et al.,
2010). In this condition, children were asked to estimate



Fig. 1. Schematic depiction of training tasks. Stimulus events are organized horizontally from start (top) to finish (bottom). The numbers indicate the
duration of presentation. The horizontal arrows indicate stimulus movement. The vertical arrows indicate the following event.
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the numerical sum of two sequentially presented arrays of
dots (addends) and judge whether an outcome array was
more or less numerous than the actual sum (see Fig. 1a).
Previous research has shown that performance on this task
correlates with mathematics achievement scores in young
elementary school children (see Gilmore et al., 2010). Fur-
thermore, a recent training experiment with adults
showed that practice with this task improved symbolic
arithmetic (Park & Brannon, 2013). In addition to requiring
the engagement of the ANS, this task may require transfor-
mational operations at the core of symbolic arithmetic
concepts, making it an ideal task to engage cognitive
mechanisms in common with those used for symbolic
mathematics (Barth et al., 2005; Gilmore et al., 2010). If
the ANS and/or the arithmetic operations involved in
non-symbolic addition overlap with those used in sym-
bolic arithmetic, then we might observe enhanced perfor-
mance on symbolic addition in children who first
practice non-symbolic addition compared to children
who practice tasks involving other quantities or other
operations.
2.1.2. Line length addition
The second condition involved addition of line lengths

(i.e. spatial extent). This condition was equal to the non-
symbolic numerical condition in terms of timing, difficulty,
and cognitive demands, but involved the addition of spatial
magnitudes rather than numerical magnitudes (see
Fig. 1b). This condition was motivated by the generalized
magnitude system hypothesis (Lourenco & Longo, 2011;
Walsh, 2003), as well as by recent findings of a relationship
between spatial magnitude representation and achieve-
ment in mathematics (Lourenco et al., 2012). If generalized
magnitude representations drive the link between sym-
bolic mathematics and performance on tasks involving
the ANS, then practice adding lines (non-symbolic addition
of lengths) may enhance subsequent symbolic arithmetic
as much as practice adding arrays of dots (non-symbolic
addition of numbers).
2.1.3. Non-symbolic numerical comparison
A third condition involved approximate, non-symbolic

numerical comparison. In this condition, subjects saw
two sequentially presented arrays of dots and had to judge
whether the second array was more or less numerous than
the first (see Fig. 1c). As reviewed above, emerging work
suggests that the ability to compare arrays of objects on
the basis of number correlates with mathematics achieve-
ment scores in a variety of contexts (e.g. Bugden & Ansari,
2011; Halberda et al., 2008; Lourenco et al., 2012). If the
ANS alone plays a functional role in symbolic arithmetic,
rather than co-activation of the ANS and cognitive arith-
metic computations as in the non-symbolic numerical
addition condition, then performance on symbolic arith-
metic problems may be enhanced in children who previ-
ously engaged the ANS through comparison or addition,
relative to children who receive other the non-numerical
training conditions.
2.1.4. Brightness comparison
A fourth condition involved comparing the brightness

magnitude of two objects (see Fig. 1d). Cognitive and
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neural overlap between representations of numerical mag-
nitudes and brightness magnitudes has been highly de-
bated (see Lourenco & Longo, 2011; Walsh, 2003). Some
evidence suggests brightness to be included with space
and number in the generalized magnitude system (e.g. Co-
hen Kadosh & Henik, 2006a, 2006b, 2006c), whereas other
evidence suggests it may be distinct (e.g. Pinel, Piazza,
LeBihan, & Dehaene, 2004). If previously observed associa-
tions between the ANS and symbolic mathematics devel-
opment are due to commonalities in processing and
comparing magnitudes in general, then no differences
should be observed in symbolic arithmetic performance
between the children in any of the training conditions.
On the other hand, if approximate number or length repre-
sentations play a functional role in symbolic arithmetic,
then better performance may be seen in conditions where
the ANS or length is engaged than in cases where bright-
ness is engaged.

2.2. Material and methods

2.2.1. Participants
Participants were 96 first grade children from the great-

er Boston area (44 females, M age = 6 years 327 days,
SD = 79 days, range: 6 years 150 days–7 years 237 days).
Twenty-four children were assigned to each condition.
An additional 21 children were eliminated from the study
for failure to complete all the training sets and at least one
test set of the experiment (16), not following directions
regarding the sequence of tasks (1), or because of an exper-
imenter error in the procedure (4). All children and their
parents gave written consent before participation in the
study and were offered $5 for travel reimbursement and
a small appreciation gift (toy or t-shirt).

2.2.2. Displays and tasks
Training games were computer-animated, non-sym-

bolic addition or comparison problems (Barth et al., 2005,
2006; McCrink & Wynn, 2004). All problems started with
a rectangular occluder in the middle of the screen (see
Fig. 1). For the non-symbolic numerical addition condition,
one dot array appeared to the left of the occluder (addend
1) and moved quickly behind it, a second dot array (addend
2) appeared to the right of the occluder and moved simi-
larly behind it, and then the occluder disappeared to reveal
a collection of dots (foil) that was numerically larger or
smaller than the actual sum (see Fig. 1a). Children indi-
cated by button-press whether the test array (foil) was
more or less numerous than the total number of items that
had moved behind the occulder (sum). Numerical arrays
were controlled for intensive and extensive parameters
(see S2 for details). In addition, we implemented a number
of design features shown by other researchers to discour-
age symbolic number strategies (Ballinger & Barth, 2007;
Barth et al., 2008; Gilmore, McCarthy, & Spelke, 2007). Spe-
cifically, we used relatively large addends (7-43 dots, aver-
age 17 dots) that were unable to be enumerated exactly
under the time constraints of the experiment and whose
sums were unlikely to be previously memorized by the
child participants (average sum/outcome = 34 dots; range
for sum/outcomes = 16–56 dots) (Details regarding timing
of events can be found in Fig. 1 and Supplementary mate-
rials S2).

For the line addition condition, one line segment ap-
peared to the left of the occluder (addend 1) and moved
quickly behind it, another line segment (addend 2) ap-
peared to the right of the occluder and moved similarly be-
hind it, and then the occluder disappeared to reveal the
third line segment (test) that was taller or shorter than
the sum of the first two segments (see Fig. 1b). Children
indicated by button-press whether the test segment was
more or less tall than the sum of the first two segments
that had moved behind the occulder. The ratio of sum to
foil and the timing of events were held constant with the
numerical addition condition.

For the number comparison condition, one dot array ap-
peared either to the left or right of the occluder and moved
behind it. After a delay, the occluder was removed to reveal
a test array (see Fig. 1c and S1 for details). Children were
asked to judge whether the test array was more or less
numerous than the initial array (see Fig. 1c). The numerical
values for the first and second array matched those used
for the sum and foil in the numerical addition condition.
Timing of dot array presence, movement, and occlusion
was equal to that of the numerical addition training
condition.

For the brightness comparison condition, an oval-
shaped form appeared behind and to the sides of the occlu-
der, shrank to fit behind the occluder first from the left and
then from the right, and then the occluder disappeared to
reveal the form in the shape of a circle at a different level
of brightness (see Fig. 1d). Children indicated by button-
press whether the circle had increased or decreased in
brightness. Trial timing and total trial duration was similar
to the numerical addition and line length addition
conditions.

Training tasks were conducted on a laptop computer
and programmed using E-prime software (Psychological
Software Tools, Pittsburgh, PA), which recorded reaction
time and accuracy. The animated problems were presented
in the context of game to maintain children’s attention (see
S2 for more details on the game context). The experi-
menter was not blind to condition, as she had to instruct
children on the introductory trials and continually monitor
progress. After each problem a ‘‘bing’’ sound indicated a
correct answer and ‘‘bong’’ sound indicated an incorrect
answer, the meaning of which was described in the initial
practice problems.

Symbolic arithmetic test problems were presented on 4
sheets of paper and completed with a pencil. The time to
complete each page of symbolic addition problems was re-
corded by the experimenter with a stopwatch, and accu-
racy was calculated after the testing session by assigning
1 point for each correct answer. Reliability of the experi-
menter’s timing measurements were confirmed in a ran-
dom sample of 16 subjects by an independent coder
using offline video recordings of the sessions (r = .99,
p < .001).

Finally, after training and test problems were com-
pleted, the ANS acuity of each participant was assessed
by means of an approximate number comparison task
using the Panamath computer game (see Halberda et al.,
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2008 for details). In this task, children saw a collection of
yellow dots, associated with a yellow cartoon character,
and a collection of blue dots, associated with a blue cartoon
character, simultaneously presented on a computer screen
for 2 s. Children were asked to choose the more numerous
array (blue or yellow) by pressing a corresponding colored
button (blue or yellow). Arrays ranged from 4–15 dots and
included numerical comparisons at 6:5, 4:3, 3:2, and 2:1
ratios. Based on accuracy at each ratio, the Panamath soft-
ware generated a psychophysical model of performance
and an estimate of numerical acuity (a Weber fraction). De-
tails regarding the freely available software, the task, or the
calculation of a Weber fraction can be found at
www.panamath.org.

2.2.3. Design and procedure
Participants were assigned quasi-randomly to experi-

mental conditions, equating for gender and age, and, as
best as possible for time of testing relative to the school
year (see S2 for details). Over the experiment, children
completed 2 sets of training trials (60 problems total), 4
sets of symbolic addition test problems (40 problems to-
tal), and an approximate, non-symbolic numerical acuity
task (actual training and test problems appear in Supple-
mentary materials S1).

Symbolic arithmetic problems were interleaved with
the experimental task in an attempt to ensure participants
gave equal care to all problems. After completing 8 practice
trials, all participants were given the first 50 trials of their
assigned non-symbolic training task, followed by 20 sym-
bolic arithmetic test problems presented on two sheets of
paper: 10 very easy problems on the first sheet and 10
moderately easy problems on the second sheet. After a
brief break (if desired), participants received 10 more
training trials, followed by 20 more exact symbolic addi-
tion problems: 10 somewhat more difficult problems on
the third sheet and 10 moderately difficult problems on
the last sheet (see S1 for all problems used). Finally, chil-
dren completed (6 practice) and 60 trials of the test of
approximate numerical acuity.

2.2.4. Analysis
ANOVAs were used to compare the different training

groups on age and approximate numerical acuity. Training
task performance was analyzed by separate mixed-factor
ANOVAs on average reaction time and accuracy with the
within-subjects factors of Ratio (2 levels), Time (first half
vs. second half), and the between-subjects factor of Train-
ing Condition (4 levels: numerical addition, line addition,
number comparison, brightness comparison). Test perfor-
mance (speed and accuracy) was computed by averaging
responses across completed test sets. A majority of chil-
dren, 71, completed all four test problem sets, 16 children
completed 3 out of 4 test problem sets, 7 children com-
pleted 2 out of 4 problem sets, and 2 children completed
only 1 problem set. Missing problem sets appeared to be
distributed equally among experimental conditions (see
S2 for details). Test performance was analyzed using ANO-
VAs on average time to complete test sets (speed) and
accuracy, with the between-subjects factor of Training
Condition (4 levels). Main effects or interactions with
Training Condition were followed up with post-hoc pair-
wise comparisons using t-tests.
2.3. Results

2.3.1. Participant factors
The children in the different conditions did not differ in

average age (F(3,95) = 1.697, p = .173: numerical addition,
M = 6 years, 311 days, SD = 73 days; line addition M =
6 years 311 days, SD = 77 days; numerical comparison
M = 6 years 355 days, SD = 67 days; brightness comparison
M = 6 years, 332 days, SD = 94 days) or approximate
numerical acuity (F(3,95) = 0.766, p = .516: numerical
addition M = .17, SD = .11; line addition M = .21, SD = .12;
numerical comparison M = .18, SD = .08; brightness com-
parison M = .17, SD = .08).
2.3.2. Training task performance
The analysis of the average reaction time during each

training task revealed main effects of Ratio (F(1,92) = 4.197,
p < . 05, g2

p ¼ :044), Time (F(1,92) = 19.385, p < .001,
g2

p ¼ :174), and Experimental Condition (F(3,92) = 7.222,
p < .001, g2

p ¼ :191), and an interaction between Ratio and
Time (F(1,92) = 5.078, p < .05, g2

p ¼ :052). Regardless of con-
dition, subjects were faster on the second half compared to
the first half of the training trials (F(1,95) = 19.297,
p < .001) (see Fig. 2). Further analysis of the interaction be-
tween Ratio and Time revealed ratio differences averaged
across all conditions emerged only on the second half of
training problems (t(95) =�3.054, p < .005), with longer
average response times to problems involving close ratios
compared to problems involving far ratios (see Fig. 3). Fur-
ther post hoc analysis of the main effect of Training Condition
on speed revealed significantly faster performance on the
brightness comparison task compared to all other tasks
(brightness vs. numerical addition: t(46) =�4.750, p < .001;
brightness vs. line addition: t(46) =�2.919, p < .01; bright-
ness vs. number comparison: t(46) = �3.312, p < .005)
(numerical addition: M = 1951 ms, SD = 284 ms,
Range = 1416–2542 ms; line addition: M = 1826 ms, SD
346 ms, 1140–2764 m; number comparison: M = 1835 ms,
SD = 294 ms, Range = 1111–2313 ms; brightness compari-
son: M = 1555 ms, SD = 292, Range = 895–2040 ms) (see
Fig. 2). No other significant differences were seen in speed
of the different tasks (all other ps > .17).

On the measure of training task accuracy, the analysis
revealed main effects of Ratio (F(1,92) = 57.859, p < .001,
g2

p ¼ :386) and Training Condition (F(3,92) = 14.764,
p < .001, g2

p ¼ :325) (Fig. 2). No main effects of Time or
interactions between factors were observed (see Fig. 2).
Participants were less accurate on problems involving
closer ratios, regardless of the experimental task. In addi-
tion, post hoc pairwise comparisons of accuracy revealed
that subjects in the brightness condition were more accu-
rate than all other groups (brightness vs. numerical addi-
tion: t(46) = 4.546, p < .001; brightness vs. line addition:
t(46) = 7.530, p < .001; brightness vs. number comparison:
t(46) = 5.723, p < .001), and the numerical comparison
group was more accurate than the line addition group
(line addition vs. number comparison: t(46) = �2.436,
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Fig. 2. Average training task performance over time in Experiment 1. (a) Average reaction time (in milliseconds) for each condition. (b) Average task
accuracy (expressed as percent correct) for each condition.

Fig. 3. Effects of ratio on average training performance over time in
Experiment 1.
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p < .05) (see Fig. 2). However, neither the line addition
group nor the numerical comparison group differed sig-
nificantly from the numerical addition group in accuracy
(numerical addition vs. line addition: t(46) = 1.596,
p = .117; numerical addition vs. numerical comparison:
t(46) = �.440, p = .662).
In sum, the analysis of performance on the four tasks of
numerical addition, line length addition, numerical com-
parison, and brightness comparison suggests that subjects
improved in speed in a ratio-dependent manner over the
course of each task, independent of the actual training con-
dition. Furthermore, those completing the brightness com-
parison task performed better than those in the other
groups: they were both faster and more accurate. On the
other hand, no differences on any of the performance mea-
sures were observed between the numerical addition
group and the numerical comparison group or between
the numerical addition group and the line-length addition
group.

2.3.3. Exact symbolic arithmetic test performance
The analysis of the average time taken by children to

complete each page of the written arithmetic test prob-
lems revealed a main effect of Training Condition
(F(1,95) = 3.366, p < .05) (see Fig. 4). Pairwise post hoc
analysis revealed that children in the numerical addition
and numerical comparison conditions completed symbolic
arithmetic problems faster than children in the non-
numerical conditions (numerical addition vs. brightness
comparison: t(46) = �2.176, p < .05; numerical addition
vs. line addition: t(46) = �2.030, p < .05; brightness vs.



Fig. 4. Average symbolic arithmetic test performance in Experiment 1. (a)
Average speed of test completion (in seconds) for each condition. (b)
Average test accuracy (expressed as percent correct) for each condition.
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number comparison: t(46) = 2.527, p < .05; line addition vs.
number comparison: t(46) = 2.327, p < .05) (see Fig. 4). No
differences in speed on symbolic arithmetic tests were ob-
served between non-numerical conditions (brightness
comparison vs. line addition: t(46) = .049, p = .961) or be-
tween numerical conditions (numerical addition vs. num-
ber comparison: t(46) = .032, p = .975) (Fig. 4).

The analysis of performance accuracy on the symbolic
arithmetic test revealed a marginally significant main ef-
fect of Training Condition (F(1,95) = 2.598, p = .057). How-
ever, post hoc pairwise comparisons revealed that the only
pair of groups showing a difference in accuracy was the
line-length addition group and the numerical comparison
group pair, with the numerical comparison group subse-
quently performing more accurately on the symbolic arith-
metic problems (t(46) = �2.576, p < .05) (see Fig. 4).

2.3.4. Further analyses
An alternative account of the differing effects of the

different training conditions on arithmetic tests appeals
not to their differences in content but the extent to which
they presented problems that were challenging or
engaging. Two aspects of the findings presented above
cast doubt on such an account. First, differences in train-
ing task performance did not consistently predict the ef-
fects of the different training conditions on subsequent
test problems. For example, reaction time and accuracy
on training problems were not different from each other
in the numerical addition and line-length addition
conditions, yet those in the numerical addition condition
performed significantly faster on subsequent test prob-
lems compared to those in the line-length addition condi-
tion. Second, no differences were observed in the extent
of learning on the different training tasks (i.e., the change
in performance from the first half to the second half of
the session), suggesting that participants where equally
engaged or attentive in their given task. Nevertheless,
additional analyses were undertaken to address this alter-
native account further. We tested for the practice effect
after controlling for effects of training task reaction time
and accuracy. The critical main effect of Training Condi-
tion on speed remained significant even after effects of
training task reaction time (F(3,91) = 8.680, p < .001) and
accuracy (F(3,91) = 4.285, p < .01) were accounted for as
covariates. Thus, Training Condition had an effect on the
time it took participants to complete exact symbolic addi-
tion problems that cannot be explained by differences in
performance, attention to, or engagement with the differ-
ent training tasks.

2.4. Discussion

The findings of Experiment 1 provide evidence that the
ANS plays a functional role in symbolic arithmetic. Chil-
dren who practiced either a non-symbolic approximate
numerical comparison or numerical addition task were fas-
ter to complete subsequent exact, symbolic addition test
problems than were children who performed comparable
tasks involving non-numerical magnitudes (length, bright-
ness). While one of these training tasks was easier than the
others (brightness comparison), our results do not appear
to be due to differences in the general difficulty of the
training tasks in which the different groups of children en-
gaged, because differential test performance was seen be-
tween numerical and non-numerical tasks of equal
difficulty (e.g. line-length addition and numerical addi-
tion), and because entering performance on the four train-
ing tasks as a covariate over all tasks did not eliminate the
critical main effect of training condition. Our results also
do not appear to depend on differential levels of learning
during the training phase, as we observed that participants
improved in speed over time on the initial experimental
task regardless of condition.

We also observed two established signatures of the ANS
in performance on the two training tasks involving numer-
ical magnitudes. First, reaction time was a function of the
ratio between the two numbers to be compared (sum vs.
foil or first array vs. second array) (Barth et al., 2005,
2008; Izard & Dehaene, 2008; Pica, Lemer, Izard, & Dehae-
ne, 2004). Second, no significant differences were observed
in performance between the numerical comparison and
the numerical addition tasks (Barth et al., 2006; Gilmore
et al., 2007). These results provide strong evidence that
subjects used the ANS to solve experimental tasks involv-
ing non-symbolic numerical magnitude.

Our experimental design and analyses provide evidence
against several alternative hypotheses related to the rela-
tionship between the ANS and symbolic arithmetic. First,
is does not appear from our data that a generalized magni-
tude system (Walsh, 2003), rather than a number-specific
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system (Dehaene, 1997), explains the relationship between
the ANS and symbolic arithmetic (Lourenco et al., 2012), as
the experimental conditions that involved non-numerical
magnitudes did not lead to better subsequent performance
compared to the experimental conditions involving non-
symbolic numerical magnitudes. Second, it does not ap-
pear that common cognitive operations inherent in sym-
bolic and non-symbolic tasks (Holloway & Ansari, 2008;
Lyons & Beilock, 2009), rather than the ANS in particular,
are responsible for correlations between the ANS and sym-
bolic mathematics, as participants showed enhanced per-
formance on symbolic arithmetic after practicing
comparison or addition of numerical magnitudes but not
after practicing tasks involving the same cognitive opera-
tions (ordering, comparison, and/or addition) over non-
numerical magnitudes. In a similar vein, a deflationary ac-
count that our results can be explained as an easier arith-
metic exercise ‘‘warming-up’’ or priming more difficult
symbolic arithmetic (e.g. Fuchs et al., 2013) does not hold,
as practicing non-symbolic numerical comparison worked
equally as well as practicing addition to improve subse-
quent symbolic arithmetic.

Our findings also provide some evidence against the
claim that the inhibitory demands of tasks involving the
ANS drive correlations with symbolic mathematics (Fuhs
& McNeil, 2013; Gilmore et al., 2013). It is possible, as
some have argued, that non-symbolic numerical tasks en-
gage executive function (EF) to a greater extent than do
non-symbolic spatial or brightness tasks, because they re-
quire children to inhibit responses to continuous variables
that are anti-correlated with number on some trials in or-
der to respond correctly. Under this view, greater com-
monalities in EF engagement between the numerical
training tasks and the symbolic arithmetic test, rather
than specific overlap in the ANS and symbolic mathemat-
ics, might explain better subsequent symbolic arithmetic
performance in the numerical training groups compared
to the non-numerical training groups. For several reasons,
this is not likely the case in our dataset. First, unlike pre-
vious studies reporting that the relationship between the
ANS and symbolic mathematics is mediated by inhibitory
control (Fuhs & McNeil, 2013; Gilmore et al., 2013), we
used stimulus controls where continuous properties could
not be reliably used to solve the tasks because they were
not systematically related to the answer. The non-numer-
ical continuous properties of each numerical array within
each trial and between trials in our study were randomly
chosen, in contrast to previous work where non-numeri-
cal properties of each numerical arrays within a problem
were reliability and systematically related to the answer
on a given trial (either all positively or all negatively cor-
related with number, although the direction of the rela-
tionship was manipulated across problems). Second, if
the numerical tasks required substantially more inhibi-
tory processes than other non-numerical tasks, this would
likely be reflected in behavioral performance. However,
the approximate numerical addition task was no harder
than the line addition task, suggesting no substantial dif-
ferences in the inhibitory control required, yet significant
differences were observed in subsequent symbolic
addition test performance. Third, exercising executive
function appears to deplete rather than enhance perfor-
mance on subsequent tasks also involving EF (Baumeister,
Bratslavsky, Muraven, & Tice, 1998; Hagger, Wood, Stiff, &
Chatzisarantis, 2010; Hofmann, Schmeichel, & Baddeley,
2012; Powell & Carey, in preparation; Schmeichel,
2007). Given the temporal structure of our experiment,
with ANS training and symbolic mathematics testing
occurring in immediate succession, a common role for
EF in both tasks would be predicted to lead to impairment
rather than to enhancement of symbolic arithmetic
performance.

Some may also argue that visuo-spatial working mem-
ory is differentially engaged between numerical and non-
numerical training tasks and could mediate the observed
relationship between approximate numerical training
tasks and symbolic math performance. Most of the argu-
ments provided against the idea of inhibitory control
mediating the effect, apply equally well against a differen-
tial working memory account. Specifically, substantial dif-
ferences in working memory between training conditions
should have been evident in training task performance,
but equal performance was observed between the numer-
ical conditions and the non-numerical line length addition
condition, for example. Also, contrary to the obtained test
results, it is likely that a training task that taxed the work-
ing memory system would lead to worse rather than better
performance on a subsequent task. Finally, the numerical
addition task clearly should tax working memory more
than the numerical comparison task, yet these two tasks
had equal effects on children’s subsequent symbolic arith-
metic performance. Nevertheless, further research should
investigate the role of EF and working memory more di-
rectly in children’s ANS practice and symbolic arithmetic
performance.

Finally, our results run contrary to the suggestion that
non-symbolic numerical addition is a better task for
improving symbolic mathematics than numerical compar-
ison (Gilmore et al., 2010; Park & Brannon, 2013), at least
under conditions of brief exercise and immediate testing.
In our experiment, practice of numerical comparison and
numerical addition produced similar effects.

The scope of the observed practice effect, however, re-
mains unclear. One possibility is that the practice effect
is specific to the domain of number or mathematics. Alter-
natively, engaging the ANS may have more general effects
on motivation, reasoning, or cognition that would translate
to an entirely different cognitive task outside the domain
of number or magnitude. In a second experiment, we
tested this hypothesis by extending the rationale and
method of Experiment 1 to include a cognitive test in the
domain of reading.
3. Experiment 2

To investigate whether engagement of the ANS en-
hances subsequent cognitive performance more generally,
we compared the effects of one numerical and one non-
numerical training task from Experiment 1 on children’s
performance within and outside the domain of mathemat-
ics. Specifically, we developed a new test of exact symbolic
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addition and a reading test involving sentence completion.
Like the addition test, the reading test was presented on
paper and required that children evaluate a statement
and write in a missing item to complete the statement.
In contrast to the addition test, the statement consisted
not of a mathematical equation but of a sentence, and
the item to be supplied was not a number (to be written
in Arabic notation) but a word. Crucially, the sentence
completion task did not contain magnitude judgments or
operations thought common to symbolic arithmetic. If
the number practice effect observed in the above studies
is specific to mathematics, then exercise of the non-sym-
bolic approximate addition task should enhance perfor-
mance on the symbolic arithmetic problems but not on
the sentence completion problems. On the other hand, if
more general motivational or cognitive factors explain
the effect observed in Experiment 1, then improved perfor-
mance might be observed on both the symbolic mathemat-
ics problems and the sentence completion problems in the
group of children who practiced numerical addition, rela-
tive to children who practiced brightness comparison.

A further motivation for Experiment 2 was to investi-
gate whether practicing non-symbolic numerical addition
could yield benefits in accuracy as well as speed. In Exper-
iment 1, we presented children with relatively easy sym-
bolic addition problems that generated little variability in
accuracy. In Experiment 2, in contrast, we presented chil-
dren with more difficult arithmetic problems in an attempt
to generate more variability in accuracy. We reasoned that
if practicing non-symbolic addition can enhance accuracy
as well as speed, then these changes in method might lead
to an effect on accuracy in addition to, or instead of, the ef-
fect on speed.

3.1. Materials and methods

3.1.1. Participants
Forty-eight first grade children (24 females, M age = 7 -

years 200 days, SD = 93 days) were included in the final
dataset. An additional 12 children participated in the study
but were excluded from analysis for not completing the
training session (7), reported developmental/language de-
lays (2), not being a native English speaker (1), taking an
extremely long time to complete the study (1), and be-
cause age did not allow appropriate counterbalancing be-
tween groups (1).

3.1.2. Procedure and design
The interleaved experimental-test procedure was mod-

ified from that of Experiment 1 to obtain a more consistent
amount of test data across all subjects. Over the course of
the entire experiment, children completed 60 training
problems, 20 symbolic arithmetic problems, and 20 sen-
tence completion problems in an interleaved fashion. Spe-
cifically, each participant performed 24 trials of their
assigned training task (either non-symbolic approximate
addition or brightness comparison) and was then given
10 sentence completion problems or 10 exact, symbolic
addition problems. Children then received 12 more trials
of their assigned training task followed by 10 more sym-
bolic addition or 10 more sentence completion problems
(see S1 for actual problems). The same procedure (12 train-
ing problems followed by 10 test problems) was repeated
twice more except those who completed mathematics
problems during the first half were given sentence comple-
tion problems during this second block of testing and visa
versa. The order of symbolic arithmetic and sentence test
problems was counterbalanced across children and gender.
With these changes, all children who completed the train-
ing trials (requisite for inclusion of data in Experiment 1)
also completed all the test trials. Thus, there were no miss-
ing test data in this experiment.

3.1.3. Displays and tasks
Non-symbolic training problems were a randomly cho-

sen subset of those used in Experiment 1 for the non-sym-
bolic numerical addition and brightness comparison
conditions, and included equal numbers of close and far ra-
tios (see Fig. 1 and S1). The exact, symbolic addition test
items consisted of new and old problems from the previous
experiments (see S1). Critically, we only reused test prob-
lems from previous test sets that were challenging to chil-
dren, as evidenced by their error rates: only problems from
Experiment 1 that had been incorrectly answered by at
least one child were included. New problems were created
to be equal or more difficult than the old problems. Sen-
tence completion problems (see S1) were developed from
basic vocabulary word lists for 1st–4th grade. Each sen-
tence included a blank with the first letter of a word that
would serve to form a meaningful, complete sentence.
Children’s task was to use the context of the sentence so
as to supply a word, beginning with the given first letter,
which created a meaningful sentence. Correctly answered
blanks filled with a vocabulary word that created a mean-
ingful sentence were scored as 1 (see S2 for accuracy scor-
ing details). Scoring procedures were the same as those in
Experiment 1 for non-symbolic training and symbolic test
problems. Reliability between the original experimenter’s
speed measurements on the test sets and an independent
coder, calculated for 8 randomly chosen subjects, was high
(r = .999, p < .001). Inferential analyses were the same as in
Experiment 1 except that the factor of Experimental Condi-
tion only included two levels (non-symbolic numerical
addition/brightness comparison) and the analysis of sym-
bolic test performance included an additional within-sub-
jects factor of Test Type (symbolic addition vs. sentence
completion).

3.2. Results

3.2.1. Participant characteristics
Children in the numerical addition and brightness com-

parison conditions did not differ in mean age (non-sym-
bolic addition: M age = 7 years 204 days, SD = 88 days;
brightness: M age = 7 years 196 days, SD = 100 days)
(F(1,47) = .089, p = .766) or in approximate number acuity
(non-symbolic addition: M = .18, SD = .07; brightness com-
parison task: M = .17, SD = . 07) (F(1,46) = .092, p = .763).

3.2.2. Training task performance
Main effects of Ratio (F(1,46) = 27.395, p < .001,

g2
p ¼ :373), Time (F(1,46) = 39.263, p < .001, g2

p ¼ :460),
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and Training Condition (F(1,46) = 42.916, p < .001,
g2

p ¼ :483), and an interaction between Time and Training
Condition (F(1,46) = 16.892, p < .001, g2

p ¼ :269) were ob-
served on average reaction time (numerical addition:
M = 1883 ms, SD = 332 ms, Range = 1278–2516 ms; bright-
ness comparison: M = 1318 ms, SD = 261 ms, Range = 861–
1913 ms). Participants were slower at answering problems
involving close ratios. Participants in the brightness train-
ing condition responded faster than those in the numerical
addition condition. Post hoc analysis revealed that the
interaction between Training Condition and Time resulted
from a larger difference between the two training condi-
tions during the first half of the training trials
(F(1,46) = 72.811, p < .001) than during the second half of
the training trials (F(1,46) = 13.452, p < .005) (see Fig. 5).

Main effects of Ratio (F(1,46) = 58.255, p < .001,
g2

p ¼ :559), Time (F(1,46) = 9.559, p < .005, g2
p ¼ :172),

Training Condition (F(1,46) = 40.443, p < .001,g2
p ¼ :468),

and an interaction between Ratio and Training Condition
(F(1,46) = 6.915, p < .05, g2

p ¼ :131) on accuracy were ob-
served (see Fig. 5). Subjects were more accurate on the sec-
ond half of problems compared to the first half of problems
regardless of task, suggesting a general effect of practice in
both conditions (Fig. 5). Post hoc analysis revealed that
participants in the brightness condition were more accu-
rate than those in the non-symbolic numerical addition
condition, participants were less accurate on closer ratio
problems regardless of condition, and the interaction re-
sulted from a larger difference between training conditions
on the harder ratio problems (F(1,46) = 37.318, p < .001)
compared to the easier ratio problems (F(1,46) = 19.332,
p < .001).
3.2.3. Symbolic addition and sentence co0mpletion test
performance

The analysis of test performance speed revealed a main
effect of Test Type (F(1,46) = 4.269, p < .05, g2

p ¼ :085) (see
Fig. 6). Sentence completion problem sets were completed
faster than symbolic addition problem sets. There was no
main effect of Training Condition on the speed of children’s
performance. The analysis of test performance accuracy
Fig. 5. Average training task performance over time in Experiment 2. (a) Averag
(expressed as percent correct) for each condition.
revealed main effects of Training Condition
(F(1,46) = 4.840, p < .05, g2

p ¼ :095), and an interaction be-
tween Test Type and Training Condition (F(1,46) = 5.234,
p < .05, g2

p ¼ :102) (see Fig. 6). Post hoc independent sam-
ples t-tests revealed that the children who received the
non-symbolic, numerical addition task were more accurate
on symbolic mathematics problems than those who re-
ceived the brightness comparison task (t(46) = �2.814,
p < .01), whereas there was no difference between the
two groups on the test of sentence completion test prob-
lems (t(46) = �.480, p = .633) (see Fig. 6). Additional analy-
ses revealed test order had no main effect or interaction
with Test Type or Training Condition on accuracy (all
ps > .39) (see S2 for analysis details).
3.2.4. Further analyses
An alternative account of the finding that children per-

formed more accurately on the symbolic mathematics test
after practicing non-symbolic numerical addition (Experi-
ments 1 and 2) is that participants were engaging symbolic
number representations jointly with ANS representations
in the numerical addition training task. Thus, the symbolic
number representations may have primed symbolic arith-
metic, and the role of the ANS representations may simply
have been to activate number symbols. If this account were
correct, then one would expect that direct presentation of
symbolic numbers also would enhance subsequent sym-
bolic addition performance. This prediction can be tested
by comparing children’s performance on the second set
of symbolic addition test problems, relative to the first
set of problems, in the children who were given the non-
numerical training task of brightness comparison. Accord-
ingly, we compared the performance of children on the
two sets of numerical addition problems in an analysis
with Test Set (1st or 2nd) and Training Condition
(Numerical Addition vs. Brightness Comparison). This
analysis revealed a main effect of Test Set on speed and
accuracy but no interactions with Training Condition
(speed: Test Set = F(1,46) = 7.427, p < .01; Test Set �
Training Condition = F(1,46) = .016, p > .90) (accuracy: Test
Set = F(1,46) = 21.454, p < .001; Test Set � Training
e reaction time (in milliseconds) for each condition. (b) Average accuracy



Fig. 6. Average arithmetic and sentence completion test performance in Experiment 2. (a) Average speed (in seconds) on each test type for each condition.
(b) Average accuracy (expressed as percent correct) on each test type or each condition.
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Condition = F(1,46) = .265, p > .60). Examination of the
means for each test set for each training condition revealed
that performance declined rather than improved during
the second set of test problems (see Fig. 7), suggesting that
engaging symbolic arithmetic did not improve subsequent
symbolic arithmetic under the brief parameters of our
experiment. These findings also suggest that the engage-
ment of symbolic number representations does not likely
explain advantages in the training conditions involving
numerical magnitudes, relative to those involving non-
numerical magnitudes. If practicing the ANS task had en-
hanced children’s symbolic arithmetic performance be-
cause it led to activation of numerical symbols, then
practicing the symbolic addition task also should have pro-
duced such an enhancement.
3.3. Discussion

Children who first practiced a non-symbolic approxi-
mate addition task subsequently performed more accu-
rately on exact, symbolic addition problems than did
children who practiced a control task involving brightness
magnitude comparison. Their greater accuracy was
achieved with no loss in speed. The benefits of ANS engage-
ment were limited to performance on problems in the
Fig. 7. Average symbolic arithmetic test performance over time in Experimen
condition. (b) Average accuracy (expressed as percent correct) on each test set f
domain of mathematics, as children trained on non-sym-
bolic addition performed more accurately only on the test
of exact, symbolic addition, not the sentence completion
test. Thus, the observed effects are likely explained by a
specialized relationship between the ANS and symbolic
mathematics, rather than by mediating factors such as ef-
fects of practice on children’s general motivation or cogni-
tive engagement, as such mechanisms would likely
generalize to enhanced performance on cognitive tasks
more broadly (including the sentence completion task). Fi-
nally, it appears that simply activating symbolic number
representations in our brief paradigm is not sufficient to
prime better performance on subsequent symbolic addi-
tion, as the presentation of symbolic numbers on the first
symbolic addition test led to no enhancement of perfor-
mance on the second symbolic addition test. These find-
ings suggest that the present effects of the ANS on
symbolic arithmetic do not simply depend on co-activation
of symbolic number representations.
4. General discussion

Two experiments provide evidence that brief practice
on a non-symbolic approximate numerical task enhances
the performance of 6–7 year old children on a subsequent
t 2. (a) Average speed (expressed in seconds) on each test set for each
or each condition.
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test of exact, symbolic arithmetic. The pattern of data ob-
tained across the different conditions indicates that these
results are not due to engagement of a generalized magni-
tude system, engagement of common cognitive operations
(such as comparison or addition), or difficulty differences
between the training tasks. Rather, our data provide evi-
dence that symbolic arithmetic draws on at least some
overlapping cognitive and/or neural structures used to rep-
resent approximate number. The pattern of data obtained
across two different test conditions in Experiment 2, indi-
cates that the enhancing effects of approximate number
representations are limited to the domain of symbolic
mathematics or number, as comparable enhancements
were not observed in children’s performance of the sen-
tence completion task. This dissociation also provides evi-
dence that participants who practiced approximate
number tasks were not simply more motivated, focused,
or engaged than those assigned to a training task involving
other quantities or variables, and that numerical compari-
sons did not prime general cognitive abilities to a greater
extent than did other tasks.

Our data also argue against symbolic number represen-
tations underlying the observed effect. First, based on ob-
served performance, it appears that children used the
ANS to solve the non-symbolic addition and comparison
training tasks. This claim is supported by evidence of two
well-established signatures of the ANS in our data: the ra-
tio effect and the equality of comparison and addition per-
formance (Barth et al., 2005, 2008; Gilmore et al., 2007;
Izard & Dehaene, 2008; Pica et al., 2004). Children were
slower and less accurate on problems where the actual an-
swer and outcome were closer in ratio compared to prob-
lems where the ratio between answer and outcome were
more distant. Children also showed equal performance on
numerical comparison and addition. In contrast, if exact
symbolic comparison and addition strategies had been
used, numerical comparison should have been easier than
numerical addition, as the comparison involves only two
numbers, not combining two numbers to compare to a
third. Moreover, no children were noted to have used ver-
bal counting or called out verbal numbers during the task;
if such strategies were being used, they were being done
covertly. Second, the design of the task employed estab-
lished procedures to discourage the use of symbolic num-
bers to answer the questions (see Ballinger & Barth, 2007;
Barth et al., 2006, 2008). We presented the numerical ar-
rays too quickly to be enumerated exactly (1 second) and
we used large numbers (average sum/outcome = 34; range
for sum/outcomes = 16–56; average addend = 17; range for
addends 7–40) to discourage rapid identification, serial
enumeration, or memorized answers to addition problems.
Third, previous work suggests that this type of task can be
performed without symbolic arithmetic knowledge (pre-
school children: Gilmore et al., 2007; monkeys: Cantlon
& Brannon, 2007) and the use of a symbolic number strat-
egy does not facilitate performance (e.g. Ballinger & Barth,
2007; Barth et al., 2008; Gilmore et al., 2007). Fourth, Park
and Brannon (2013) showed that training on a task involv-
ing ordering symbolic number does not lead to as signifi-
cant gains in symbolic arithmetic as a training task
engaging the ANS. Consistent with their findings, the
participants in both conditions of Experiment 2 engaged
symbolic numbers during the first block of symbolic addi-
tion test problems, but this engagement did not yield
improvements on the second set of test problems. In fact,
subjects in Experiment 2 performed worse on the second
set of symbolic addition problems, regardless of training
condition. These findings cast doubt on the possibility that
symbolic number engagement over non-symbolic numeri-
cal arrays, rather than the ANS itself, drives the observed
enhancements seen in the numerical training conditions
of our experiments. While we cannot entirely rule out
the possibility that symbolic number representations were
co-activated with ANS representations, our results, our de-
sign, and previous research all suggest that the ANS rather
than symbolic number representations was used to solve
the tasks and likely drives the observed effect. Future re-
search using the method of Experiment 2 with different
symbolic tests as outcome measures may add further in-
sight into this issue.

In sum, the present findings move beyond the findings
of correlational studies (Gilmore et al., 2010; Halberda
et al., 2008; Libertus et al., 2011; Mazzocco et al., 2011;
Mundy & Gilmore, 2009) and build on recent training
experiments (Park & Brannon, 2013) to provide experi-
mental evidence that exercising the primitive system of
approximate number representation can enhance both
the speed and the accuracy of children’s performance of
symbolic mathematics. However, the results also raise a
number of questions regarding the nature of this effect.

First, the developmental origins of the relationship be-
tween the ANS and symbolic number remain unclear.
ANS acuity is associated with facility at symbolic mathe-
matics across the lifespan, from infants (Starr et al., in
press) to preschool children (Halberda et al., 2008) to oct-
ogenerians (Halberda et al., 2012). Experimental studies in
children (current study) and adults (Park & Brannon, 2013)
seem to suggest that practice or training with the ANS en-
hances symbolic mathematics. Our results show that the
functional and causal link between ANS activation and
symbolic arithmetic performance does not require a
lengthy history of education in symbolic mathematics, as
it occurs in children who are only in their second year of
formal schooling and participants in most previous studies
have had at least some working knowledge of symbolic
number and formed initial mappings between symbolic
number representations and the ANS. It is unclear if earlier
interventions (such as those in infants or toddlers) cen-
tered on engaging and exercising the ANS, would lead to
better mathematics outcomes later in life. It also is unclear
if later interventions on participants whose manipulations
of number systems are fully automatic (e.g. Bugden &
Ansari, 2011; Girelli, Lucangeli, & Butterworth, 2000)
would show the same immediate effects found in the pres-
ent experiments. On one view, both initial learning and
mature performance of symbolic mathematical computa-
tions such as arithmetic depend on the ANS (Dehaene &
Cohen, 1997; Isaacs, Edmonds, Lucas, & Gadian, 2001;
Lee, 2000; Levy, Reis, & Grafman, 1999; Molko et al.,
2003; Takayama, Sugishita, Akiguchi, & Kimura, 1994),
which plays an obligatory role in exact symbolic numerical
representations and arithmetic operations. On a different
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view, the ANS and symbolic number representations be-
come linked because they are repeatedly associated with
one another over the course of children’s learning of num-
ber symbols; thus, the ANS plays a habitual rather than
obligatory role in symbolic mathematics performance
(e.g. Lyons & Beilock, 2011; Sasanguie, De Smedt, Defever,
& Reynvoet, 2011). On a third view, symbolic mathematics
performance may depend on the ANS at early points in
learning, but its influence may decline or become more
habitual once symbolic arithmetic skills are fully auto-
matic. Future research using the same training methods
at different ages may adjudicate between these views.

A second open question concerns the symmetry or
asymmetry of the causal relationship between the sym-
bolic and non-symbolic number systems. Although the
present experiments tested only for a relationship in one
direction, and showed that exercising the ANS can enhance
symbolic number processing, it is possible that causal ef-
fects operate in the reverse direction as well. Consistent
with the latter possibility, the Munduruku of the Brazilian
Amazon provide suggestive evidence of an effect of sym-
bolic number training on the acuity of the ANS (Piazza
et al., 2013). The Munduruku language has a limited
numerical vocabulary and no formal symbolic number sys-
tem. However, some Munduruku have learned the Portu-
guese numerical language and some have studied
symbolic arithmetic in school. Individual differences
among the Munduruku in ANS acuity are associated with
both of these factors (Piazza et al., 2013).

Finally, the depth and temporal extent of the effects of
ANS activation on symbolic number processing are not
known. Recent work shows that extended, intense practice
with the ANS through an approximate addition task can
change both ANS acuity and symbolic mathematics ability
and extent of ANS acuity change in individual participants
correlates with individual increases symbolic arithmetic
(Park & Brannon, 2013). No significant differences in ANS
acuity were observed between children in the different
training conditions of our study, casting doubt on the pos-
sibility that the mechanism of symbolic mathematics
enhancement in our study was an ANS acuity change. In-
stead, it appears that simply preceding symbolic arithme-
tic with focused engagement of the ANS was sufficient to
produce the effects on symbolic arithmetic. We speculate
our effects arose through engagement of common cogni-
tive mechanisms in the two tasks. Because the present re-
search involved very brief practice and immediate testing,
we do not know whether the effects on symbolic arithme-
tic reported here are momentary or enduring. Future work
should contrast the extent and duration of symbolic math-
ematics outcomes after tasks involving engagement of,
compared to change in, the ANS.

Regardless of the answers to these questions, our
studies provide evidence for a causal relationship between
non-symbolic approximate number and exact, symbolic
arithmetic by children, and they move beyond previous
work to delineate the specificity of this relationship. The
fact that a single session of practice on an approximate
number task can improve both the speed with which chil-
dren solve easier symbolic mathematics problems, and the
accuracy with which they solve harder mathematics
problems, raises important possibilities for future educa-
tional research. In particular, it is possible that exercises
engaging the ANS will provide a way not only to speed
up mathematics performance in an immediately following
test but also to boost performance of school mathematics
in a more enduring way. In light of the importance of
mathematics both in the elementary school curriculum
and in diverse disciplines and professions, this possibility
deserves to be tested.
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