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The approximate number system (ANS) underlies representations
of large numbers of objects as well as the additive, subtractive,
and multiplicative relationships between them. In this set of stud-
ies, 5- and 6-year-old children were shown a series of video-based
events that conveyed a transformation of a large number of objects
into one-half or one-quarter of the original number. Children were
able to estimate correctly the outcomes to these halving and quar-
tering problems, and they based their responses on scaling by
number, not on continuous quantities or guessing strategies.
Children’s performance exhibited the ratio signature of the ANS.
Moreover, children performed above chance on relatively early
trials, suggesting that this scaling operation is easily conveyed
and readily performed. The results support the existence of a flexible
and substantially untrained capacity to scale numerical amounts.

� 2015 Elsevier Inc. All rights reserved.
Introduction

Psychologists who study the development of proportional reasoning have long detailed the diffi-
culty that young children have in understanding symbolic ratios, fractions, and division (Carpenter,
Corbitt, Kepner, Lindquist, & Reys, 1981; Dixon & Moore, 1996; Fischbein, 1990; Kieren, 1988;
Mack, 1990; Moore, Dixon, & Haines, 1991; Nunes, Schliemann, & Carraher, 1993; Piaget &
Inhelder, 1956, 1975; Post, 1981; Reyna & Brainerd, 1994; Singer, Kohn, & Resnick, 1997). The part–
whole relationship, a key component of proportional reasoning, can be particularly difficult to master
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in numerical contexts; in one classic study, children up to 7 years of age struggled to understand that
an array comprising six roses and two daisies has more flowers than roses (Inhelder & Piaget, 1964). In
addition, the inverse relationship between the number of partitions of a set of objects and the number
of objects in each partition is challenging for young children (Frydman & Bryant, 1988; Sophian,
Garyantes, & Chang, 1997; Spinillo & Bryant, 1991). In one study, 5-to 7-year-olds were presented
with a number of ‘‘pizza bits” to distribute among multiple sharers with the goal of obtaining the
largest share of bits for a ‘‘pizza monster” (Sophian et al., 1997). Children had difficulty in realizing
that the more portions into which the bits were divided, the fewer the bits in each portion. Finally,
preschoolers who see a set of objects divided in half, and who are provided with the number of objects
in one of the halves, are unable to infer that the other half has the same number of objects (Frydman &
Bryant, 1988). All of these findings suggest that young children fail to grasp the logic of exact division
of discrete quantities.

In contrast, a further body of work reveals that young children competently reason about propor-
tions and ratios in tasks presenting continuous quantities such as overall area or space (Duffy,
Huttenlocher, & Levine, 2005; Goswami, 1989; Jeong, Levine, & Huttenlocher, 2007; Mix, Levine, &
Huttenlocher, 1999; Sophian, 2000; Spinillo & Bryant, 1991; but cf. Piaget & Inhelder, 1956). In one
such study, Goswami (1989) found that by 6 years of age children who were given multiple examples
of a particular proportion of shaded/unshaded area in a shape were able to pick a test item that
showed the same proportion. In a similar paradigm, Sophian (2000) presented 4- and 5-year-olds with
a sample stimulus that exhibited a particular proportional relationship (e.g., an animal with a
relatively small body and large head) and asked them to choose the animal that was ‘‘just like” it from
a pair of test items, one of which presented the same proportional relationship. Children successfully
performed this analogical task at as young as 4 years across a range of stimulus types and
configurations.

There is also suggestive evidence for a special sensitivity to halving within the context of analogical
proportion reasoning, with the concept of ‘‘half as much” being privileged in the mind of a child.
Spinillo and Bryant (1991) presented children with a box that exhibited a particular proportion of
one color to another (e.g., 3/8 blue and 5/8 white) along with two pictures and asked children to
choose which picture matched the correct proportion exhibited by the box. By 6 years of age, children
were significantly better at choosing the matching picture when the foil crossed the half boundary
(i.e., 3/8 vs. 5/8) than when it did not (i.e., 3/8 vs. 1/8). They also performed better overall when given
a standard stimulus that exhibited an exact one-half proportion. The authors proposed that one-half
acts as a category boundary to proportional reasoning. These results, together with other studies that
show an early facility with simple proportions that are readily relatable to a proportion of one-half
(Ball, 1993; Goswami, 1989; Mix et al., 1999; Singer-Freeman & Goswami, 2001), suggest that the
process of mentally halving a continuous amount might be special capacity of limited flexibility.

With few exceptions (e.g., McCrink & Wynn, 2007), young children’s successful proportional
reasoning has been observed only with non-numerical spatial quantities. Indeed, children seem to
be actively impaired in proportional reasoning about precise numbers (Boyer, Levine, &
Huttenlocher, 2008; Jeong et al., 2007; Singer-Freeman & Goswami, 2001; Spinillo & Bryant, 1991).
For example, Boyer and colleagues (2008) provided first- and third-graders with a standard that
exemplified a particular proportion (e.g., a beaker one-third full of juice) and instructed them to
choose from a pair of test stimuli the picture that was the ‘‘right mix” of juice. Children were able
to perform the task readily when the choice was over a continuous amount of liquid, but when the
standard was notched into countable units of juice and water even older children failed to intuit
and apply the correct relationship between the standard and test items. Dissociations such as
these have led some theorists to posit that the strategies children use to reason about number,
such as counting, interfere with intuitive notions of proportion (Gelman, Cohen, & Hartnett, 1989;
Mix et al., 1999).

A parallel body of literature has established that human adults, children, infants, and non-human
animals are able to represent large numbers of objects (Cordes, Gelman, Gallistel, & Whalen, 2001;
Gallistel, 1990; Starkey & Cooper, 1980; Starkey, Spelke, & Gelman, 1990; van Loesbrook &
Smitsman, 1990; Xu & Spelke, 2000), events (Platt & Johnson, 1971; Wood & Spelke, 2005), and sounds
(Lipton & Spelke, 2004; Meck & Church, 1983) in an approximate fashion. The approximate
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number system (ANS) is thought to be one of several untrained core cognitive systems shaped by
natural selection (Dehaene, 1997; Gallistel, 1990). The ability to discriminate two amounts
represented by the ANS is determined by their ratio rather than their difference; for example, the dis-
criminability of 10 and 20 is comparable to the discriminability of 40 and 80 (Izard & Dehaene, 2008).

In addition to representing the number of one set of items or events, the ANS allows for the pro-
ductive combination of numerical quantities. Many populations, including human infants, children,
and adults as well as adult non-human animals, can add, subtract, and order approximate numerical
magnitudes (Brannon, Wusthoff, Gallistel, & Gibbon, 2001; Cantlon & Brannon, 2006; Capaldi & Miller,
1988). Recent evidence suggests that the suite of available mathematical operations in childhood may
also include a process that scales large approximate numbers in a multiplicative or divisive fashion
(Barth, Baron, Spelke, & Carey, 2009; McCrink & Spelke, 2010). Barth and colleagues (2009) presented
evidence for non-symbolic division of number in a halving task. In this experiment, the authors pre-
sented 6- and 7-year-old children who had no formal education in multiplication or division with a
large array of objects for a brief amount of time, covered them, played a sound, and showed children
a subsequent amount that was diminished at the time of the sound by half its original value. After this
training session, children were presented with novel amounts, which were then occluded before the
sound was played. A comparison array came down to the side of the transformed and occluded set,
and children needed to choose which array was more numerous. Children who saw these transforma-
tions were successfully able to anticipate the numerical outcomes and compare this amount with
another amount, indicating that they could mentally halve the initial amount prior to learning any
division algorithms and without the aid of precise counting. That is, children were able to infer the
relationship between 2 and 1 (1/2) and use that relationship to transform a novel magnitude (say,
24 objects) by one-half.

Using a similar paradigm, McCrink and Spelke (2010) presented 5- and 6-year-old children with
multiplicative transformations requiring them to scale numerical magnitudes by factors of 2, 2.5,
and 4. Children were able to calculate all of these scaling factors, extending Barth and colleagues’
(2009) finding that children could double as well as halve magnitudes. Furthermore, the noisiness
of the represented outcomes of this multiplicative scaling process increased with increases in the scal-
ing factor either because of the increased size of the represented outcome or because of the increased
size of the scaling factor itself. To explain these findings, McCrink and Spelke (2010) posited the exis-
tence of an untrained numerical, non-symbolic scaling process that gradually transitions via schooling
and rote learning into a faster and more exact system based on verbally encoded stored arithmetic
facts. This scaling process is conceptually related to the analogical proportional reasoning tasks over
spatial dimensions (e.g., Boyer et al., 2008; Sophian, 2000). The extraction of the scaling change from 1
to 4, and the application of this relationship to derive 40 from 10, relies on similar logic to that
shown by children who view a standard rectangle of 1 by 4 units and successfully choose a matching
rectangle of 10 by 40 units, as in Goswami’s (1989) research on proportional reasoning.

Critically, this non-symbolic numerical scaling process is hypothesized to operate over the abstract
variable of number per se—that is, representations from the ANS that arise independently of spatial
dimensions such as area that tend to co-vary with magnitude in natural settings. The experiments
of Barth and colleagues (2009) and McCrink and Spelke (2010) controlled for non-numerical
magnitude information so as to distinguish numerical representations from representations of other
quantities such as summed area. In their tasks, moreover, the scaling required that amounts be held
in children’s memory and transformed serially in an order that follows the serial nature of symbolic
written calculations; children needed to store the information about each amount individually in
order to intuit the exhibited proportion. This paradigm also allows investigators to examine scaling
up and scaling down separately, whereas a match-to-sample task in which both the set and subset
are continuously present when calculating the proportion necessarily presents both transformations
together (e.g., Goswami, 1989; Jeong et al., 2007; Mix et al., 1999; Sophian, 2000; Spinillo & Bryant,
1991; cf. Boyer et al., 2008). When the set and subset are concurrent, processes of scaling up versus
down cannot be separated because it is not clear whether children anchor on the smaller or larger
number.

Although many theorists posit that representations arising from the ANS are ultimately distinct
from representations of spatial continua (Piazza & Izard, 2009; see Cohen Kadosh & Walsh, 2009,
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for an opposing view), they nevertheless are related. Spatial continua—such as area and line length—
and numerical magnitudes activate both separate and overlapping neurons in rhesus monkeys
(Macaca mulatta; Tudusciuc & Nieder, 2007), and the two variables productively combine with time
to calculate important dimensions such as rate and probability (Gallistel, 1990; Rakoczy et al.,
2014). Infants are spontaneously attuned to congruent relationships between number and space (de
Hevia, Izard, Coubart, Spelke, & Streri, 2014; de Hevia & Spelke, 2010; Lourenco & Longo, 2010). With
respect to proportions, both spatial proportions (e.g., the ratio of two line lengths) and numerical
proportions (e.g., the ratio of two Arabic numerals) are readily extracted, related, and generalized,
and these operations activate similar brain regions (Jacob & Nieder, 2009a, 2009b; for a review, see
Jacob, Vallentin, & Nieder, 2012). Given the positive results documenting flexible computations of
spatial proportions in young children (Boyer et al., 2008; Sophian, 2000) and the fundamental
relationship between space and non-symbolic number (Lourenco, Bonny, Fernandez, & Rao, 2012),
we may observe a similar flexibility of scaling in tasks activating the ANS.

The current investigation aimed to distinguish between two distinct accounts of all these findings.
First, non-symbolic division may operate on continuous quantities (e.g., Boyer et al., 2008) but not
discrete ones. If this is true, the findings of Barth and colleagues (2009) on non-symbolic halving
over number representations were due to the prevalence of one-half as a special mental boundary
(e.g., Ball, 1993; Spinillo & Bryant, 1991) and/or of splitting as a central cognitive construct
(Confrey, 1994). Second, children’s division may operate on non-symbolic approximate quantities
for both space and number—but not on exact discrete quantities (leading to the disconnect between
notched discrete units and continuous amounts found by Jeong et al., 2007, and Boyer et al., 2008). On
the first hypothesis, a conceptual and flexible scaling process will not apply to ANS representations; on
the second hypothesis, it will.

Using a paradigm similar to McCrink and Spelke’s (2010) study of non-symbolic multiplication
allows us to gauge whether a single, bidirectional scaling process supports multiplication and division,
such that the mind treats scaling up by a particular factor as the cognitive inverse of scaling down by
that same factor. By examining this question, we gain insight into whether a single non-symbolic
numerical scaling mechanism provides the platform for two distinct operations. In formal mathemat-
ics, scaling up and scaling down are complementary; are non-symbolic scaling abilities complemen-
tary as well? Both empirical and anecdotal reports from educators have long noted that there is an
asymmetry between children’s learning of symbolic multiplication and division during schooling
(e.g., Campbell, 1997; Fischbein, Deri, Nello, & Marino, 1985; Mulligan, 1992). Multiplication is consid-
ered easier and is usually taught first; the process of learning to divide takes years to master and
encompasses difficult concepts such as fractions (Burns, 2007; Rich & Schmidt, 1997). Does non-
symbolic numerical scaling also show an asymmetry between multiplication and division, or does
the asymmetry arise from the particular nature of the symbolic system and the algorithms for manip-
ulating symbols to achieve the correct arithmetic outcome?

To examine these questions, we adapted the paradigm of McCrink and Spelke (2010) to present
5- and 6-year-old children with non-symbolic division problems in which arrays of varying number
were scaled down by a factor of 2.0 (Experiment 1) or 4.0 (Experiment 2). If children cannot divide
non-symbolic numerical quantities, and the concept of one-half was somehow special or unique in
allowing children to succeed in previous work on the topic (e.g., Barth et al., 2009; Spinillo &
Bryant, 1991), we should observe successful performance in the Division by 2 condition and failure
in the Division by 4 condition. If, however, a non-symbolic scaling process can take as input any initial
amount and scaling factor, and can divide over approximate discrete non-symbolic quantities, we
should observe success in both conditions, with lower overall performance as the scaling factor
increases. We tracked performance from the first transformation onward in order to obtain a measure
of the ease with which children can learn about this relationship from a single exemplar; if halving is
especially intuitive, one would predict better performance, more quickly, in the task for that particular
proportion. In addition, if non-symbolic division is more difficult than the non-symbolic multiplication
found by McCrink and Spelke (2010), we would expect that children in the current study would exhi-
bit worse overall performance when dividing. However, if non-symbolic multiplication and division
are psychologically complementary, we should find similar levels of competence for doubling/halving
and quadrupling/quartering.
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Experiment 1: Division by 2

Method

Participants
A sample of 16 5- and 6-year-old children (8 girls and 8 boys; age range = 63 months 0 days to

83 months 18 days, mean age = 72 months) were recruited via a large mailing database in the greater
Boston area of the northeastern United States. Participants were divided into older (72–84 months,
n = 8) and younger (60–72 months, n = 8) age groups. None of the participants in the final sample
had formal education in multiplication or division.1 One additional child was excluded from the final
dataset due to experimenter error in recording her answers. This study included 5- and 6-year-olds as
the population of interest because they are mature enough to complete the lengthy task, do not yet have
formal education on division in school but do have a relatively precise number sense on the values
selected here (Halberda & Feigenson, 2008), and were the same age as those tested in McCrink and
Spelke (2010), allowing us to compare overall competence in these related studies.

Displays and procedure
Scaling factor introduction. The child and experimenter were seated together in a quiet testing room at
a large table and watched the video displays on a Macintosh laptop computer. The child first viewed a
display consisting of two blue rectangles, which grew and shrank for several seconds before becoming
stationary. As the rectangles remained on the screen, an animated wand appeared from off-screen left
and waved over them while making a ‘‘magical” twinkling sound. After several seconds of waving, the
two rectangles merged into one rectangle and the experimenter exclaimed, ‘‘Look! It’s our magic
dividing wand. It made less. There used to be two blue rectangles, and now there is one. It doesn’t mat-
ter if the rectangles are big or small. The wand takes two rectangles and makes them one.” After this
video, the child saw a follow-up transformation video that was identical to the previous video, but
now the rectangles were occluded during the waving of the wand. The experimenter paused the movie
after the wand waved and asked the child how many rectangles there were behind the screen. Once
the child was able to answer this question correctly (on the first trial for 12/16 children and on the
second or third trial for the rest), the experiment moved on to the training trials.

Training block. In the training videos, children saw an array of blue rectangles on the left side of the
screen. During the first training video, the experimenter pointed to this array and said, ‘‘Now we have
this many rectangles. There’s too many to count, so we’re going to concentrate and use our imagina-
tion. So, it’s not a counting game, it’s an imagination game, and we just have to think really hard.” After
5 s, an occluder came up from off-screen and occluded the initial array. The dividing wand then came
out and waved over the occluded array while the experimenter said, ‘‘Look! They’re getting divided.” A
comparison array composed of pink rectangles came down on the right side of the screen. These rect-
angles were of identical size (1 cm2) and density (�15 objects per 25 cm2) across all training trials. The
child was asked to choose where he or she thought there were more rectangles. Critically, the initial
array remained occluded while the child made the choice. The participant needed to calculate the
inferred outcome behind the occluder and use that outcome to guide the decision as to which array
(the transformed array or the comparison array) contained more objects. To control for experimenter
bias, the experimenter (a) sat slightly behind the child and several feet from the screen, (b) phrased
the question neutrally (‘‘Where do you think there are more?”, ‘‘Which side of the screen do you think
has more?”), and (c) looked at the child, and not the screen, until the child provided an answer. After
answering left/right or pointing to the right or left side of the screen, the experimenter recorded the
child’s answer, then pressed a button to drop the occluder and reveal the transformed array, and
1 The standardized course of instruction for many of the schools in this area is to introduce the terms ‘‘quarter” and ‘‘half” when
children are in first or second grade (e.g., slightly older than our sample). That is not to say that the children did not know these
terms or concepts, which occur in conversations with preschool children. In ordinary conversations, however, halving and
quartering are more likely to be applied to continuous portions (e.g., ‘‘You can have half of this big cookie”) than to discrete
numbers (e.g., ‘‘You can have half of these 10 grapes”). Nevertheless, we avoid the terms entirely when describing the events.



K. McCrink, E.S. Spelke / Journal of Experimental Child Psychology 142 (2016) 66–82 71
provided feedback to the child as to whether his or her response was correct or incorrect. The next
training movie was then presented.

To encourage children to base their judgments on number and not on correlated continuous vari-
ables, the outcome array that children viewed at the end of each training trial had an identical area to
that of the initial array on that trial, and it was created by joining the pairs of rectangles into one larger
rectangle. In this way, children received evidence that the aspect of the display that transformed was
number (which was now lesser by a factor of 2.0) and not summed area (which remained the same).
The area of the outcome/initial array was, on average, an intermediate value relative to the areas of the
comparison arrays. For example, an initial display of 24 objects (�13 cm2) that was transformed into
12 objects (still � 13 cm2) was shown against a comparison array of 6, 8, 18, and 24 objects (�6, 8, 18,
and 24 cm2, respectively). For these training trials, therefore, the area of the outcome array relative to
the area of the comparison array was confounded and children could potentially use one or both
variables to arrive at the correct answer. (This confounding variable was controlled in the test trials.)

To test whether children recruited approximate number representations, we manipulated what we
term a distance factor by providing some test trials in which the relationship between the transformed
outcome was relatively disparate (e.g., it differed by a factor of 2.0; the value of the comparison array
was either the correct outcome /2.0 or ⁄2.0) or relatively close (e.g., it differed by a factor of 1.5; the
value of the comparison array was either the correct amount /1.5 or ⁄1.5). This variation yields a
design in which we can examine performance when the correct outcome is psychologically close to
(distance /1.5 or ⁄1.5) or far from (distance /2.0 or ⁄2.0) the comparison array, with the prediction that
the values used in the distance factor 2.0 trials will be more discriminable, and therefore easier, than
those used in the distance factor 1.5 trials. Although the ratio of 1.5:1 between the comparison array
and the transformed array may seem insufficiently challenging, research on non-symbolic arithmetic
operations in adulthood finds increased errors when combining multiple numerical representations in
an equation (Cordes, Gallistel, Gelman, & Latham, 2007; Katz & Knops, 2014; McCrink, Dehaene, &
Dehaene-Lambertz, 2007). Furthermore, the serial nature of the paradigm has the potential to result
in relatively erroneous representations at the decision point because children must hold the initial and
transformed arrays in their memory for several seconds longer than a traditional numerical discrim-
ination paradigm (e.g., Halberda & Feigenson, 2008) and working memory is relatively weak in young
children (Alloway, Pickering, & Gathercole, 2006). During pilot testing, this ratio proved to be chal-
lenging for children, as it has been in previous research presenting children with non-symbolic addi-
tion and subtraction tasks (Barth, La Mont, Lipton, & Spelke, 2005; Gilmore, McCarthy, & Spelke, 2007).
After 12 training trials were completed, children had a small break in which they stretched and moved
around the room. After this break, the experiment moved on to the test trials.

Testing block. The 16 test trials were similar to the training trials. An array was presented, occluded,
and transformed by a stroke of the wand, and then a comparison array came down from off-screen.
Children made the ‘‘more” judgment just as in training. However, there were three differences
between training and testing. First, children did not see the final product of the transformation behind
the occluder (it remained covered even after children answered) and they were not told whether they
answered correctly or incorrectly; instead, the experimenter provided uniformly positive feedback on
each trial (‘‘Great job! You’re doing so well. Let’s do another!”). Second, the comparison arrays, which
had previously been controlled for density and item size (e.g., each object was 1 cm2, with �15 objects
per 25 cm2), were controlled at testing for area and contour length. Whereas during training the com-
parison arrays were composed of an array of uniform small squares, the comparison arrays at test
were varied and rectangular, and each array at each distance (correct outcome /2.0, /1.5, ⁄1.5, or
⁄2.0) had equal area and contour length. For example, an initial array of 16 varied rectangles would
be occluded and transformed and remain hidden and then would be compared with arrays of 4, 6,
12, and 16, all of which had the same area and contour length as each other (in this case, �31 cm2

and 102 cm2 contour length). If children had come to rely on area or contour length during the training
trials as the sole cues to numerosity of the comparison array (higher area and contour length equaled
higher number), they would perform at chance on the test trials. In addition, the overall area and con-
tour length for the comparison arrays at testing (�30 cm2 area and 100 cm2 contour length average
across all arrays) were chosen to be equidistant from both the very large and very small outcome
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arrays that children may have visualized behind the occluder based on their training experience. Even
though children never saw the outcome arrays, this control discourages a strategy of comparing the
area or contour length of the imagined outcome array with that of the comparison array. Thus,
children must attend to numerical values, and not perceptual variables that co-vary with number,
to succeed on the task. Third, new numerical values were used in testing so that children’s
performance could not reflect rote learning of the values in the training trials. Fig. 1 presents a
schematic of the procedure and stimuli.

Because we wished to promote the use of number, in order to examine the role of the ANS in
particular during these calculations, a necessary part of this design was to disallow exact counting
and encourage approximate number representations. This was done because the process under exam-
ination here is hypothesized to occur over represented imprecise numerical variables typically
thought to have been generated from the ANS, and if children generated precise representations,
we would be studying a different process. Thus, for both the training and testing trials, children were
verbally encouraged not to count the arrays. The experimenter also stopped children from counting
when he/she saw them tagging each object and moving their lips to number the objects. Finally,
and most important, the initial array was occluded before accurate counting could take place in most
instances (after only a few seconds), and after the first trial children abandoned any counting, answer-
ing quickly in order to advance to the next trial. Very few tried to explicitly count beyond the first trial
given these constraints, and even these children gave up the strategy 2 or 3 trials into training. The
arrays used in this experiment were extremely large, such that it was a hopeless strategy to enumerate
precise amounts given the time allowed (see Table 1 for specific values).

Design. There were 12 training trials and 16 test trials. On equal numbers of trials in each category, the
comparison array differed from the outcome by a distance factor of /2.0 (i.e., the correct outcome to
the presented problem divided by 2), /1.5, ⁄1.5, or ⁄2.0. For the exact values used in this experiment
and Experiment 2, see Table 1.

Results

For each participant, we calculated mean performance on trials whose comparison arrays were a
particular distance from the correct outcome (/2.0, /1.5, ⁄1.5, or ⁄2.0). Overall performance during
training (81%) and testing (82%) was significantly above chance (one-sample t-tests: ts(15) = 9.07
and 10.83, both ps < .001, one-tailed). Given a total of 28 trials and an alpha level of .05, a binomial
test level of above-chance responding is a minimum of 19 trials correct (67.8%, one-tailed). We calcu-
lated the number of children whose individual performance was above this chance threshold, and 15
of 16 children met this criterion (15 observed successes with a total N of 16, binomial sign test with an
alpha of .05, p < .001, one-tailed). An analysis of variance (ANOVA) with block (training block or testing
block) and distance (/2.0, /1.5, ⁄1.5, or ⁄2.0) as within-participant factors and gender (male or female)
and age (60–72 months or 72–84 months) as between-participant factors was performed over these
scores. There were no main effects of block, F(1, 12) = 0.04, p = .83), gender, F(1, 12) = 1.45, p = .25,
or age, F(1, 12) = 0.01, p = .91. There was a main effect of distance, F(3, 36) = 6.90, p = .001. Follow-
up Bonferroni-corrected pairwise comparisons suggest that this effect was due to significantly lower
performance in the ⁄1.5 distance trials (68%), which differed from the /2.0 distance trials (92%; p < .05)
but not the /1.5 and ⁄2.0 trials (87% and 80%, respectively; ps = .17 and .54). The other distance trials
did not significantly differ from each other; within-participant contrasts reveal both a significant
quadratic (i.e., U-shaped) trend, F(1, 12) = 7.22, p = .02, which captures the generally higher perfor-
mance for distance 2.0 compared with distance 1.5, and a linear trend, F(1, 12) = 11.99, p < .01, which
reflects the poorer overall performance when participants were required to judge comparison arrays
that were greater than the correct outcome (⁄2.0 and ⁄1.5) versus smaller than that outcome (/2.0 and
/1.5). There was a significant interaction between block and age, F(1, 12) = 5.58, p < .05. The younger
children performed slightly better in training (85%) than testing (77%), whereas the older children
performed slightly better in testing (87%) than training (77%). With the exception of the distance
⁄1.5 training trials, children performed significantly better than chance on all testing and training trial
types (one-sample t-tests: all ps < .05). Overall, children performed better when given comparison



Fig. 1. Schematic of the division videos presented to the children.

Table 1
Exact operand and comparison array values used in
Experiments 1 and 2.

Exp 1: Division by 2 Exp 2: Division by 4

Training Training
24/2 vs. 6 48/4 vs. 6
24/2 vs. 8 48/4 vs. 8
24/2 vs. 18 48/4 vs. 18
24/2 vs. 24 48/4 vs. 24
44/2 vs. 11 88/4 vs. 11
44/2 vs. 15 88/4 vs. 15
44/2 vs. 33 88/4 vs. 33
44/2 vs. 44 88/4 vs. 44
56/2 vs. 14 112/4 vs. 14
56/2 vs. 19 112/4 vs. 19
56/2 vs. 42 112/4 vs. 42
56/2 vs. 56 112/4 vs. 56

Testing Testing
16/2 vs. 4 32/4 vs. 4
16/2 vs. 5 32/4 vs. 5
16/2 vs. 12 32/4 vs. 12
16/2 vs. 16 32/4 vs. 16
32/2 vs. 8 64/4 vs. 8
32/2 vs. 11 64/4 vs. 11
32/2 vs. 24 64/4 vs. 24
32/2 vs. 32 64/4 vs. 32
48/2 vs. 12 96/4 vs. 12
48/2 vs. 16 96/4 vs. 16
48/2 vs. 36 96/4 vs. 36
48/2 vs. 48 96/4 vs. 48
64/2 vs. 16 128/4 vs. 16
64/2 vs. 21 128/4 vs. 21
64/2 vs. 48 128/4 vs. 48
64/2 vs. 64 128/4 vs. 64
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arrays that differed by a factor of 2.0 (86% correct) than a factor of 1.5 (77%) (paired-samples t-test: t
(15) = 2.75, p = .008, one-tailed) due to the prediction of a Weber ratio signature commonly found in
studies that evoke ANS representations).

To test whether children learned this scaling relationship over the course of training, we tabulated
each participant’s percentage of correct responding for the first and last trials at each distance trial
type (correct /2.0, /1.5, ⁄1.5, or ⁄2.0) during the training block. Because the trials were randomized
across participants, taking just the last 4 and first 4 training trials may have yielded inaccurate
comparisons that varied with how often each distance trial appeared at the beginning or end of train-
ing. Thus, the term ‘‘first” here refers to the first trials shown of each distance type, and the absolute
number of trials on which children received feedback ranged from 4 (the minimum to capture all ratio
types) to 8, depending on how their trial randomization proceeded. We examined training trials, and
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not test trials, because we were interested in questions of (a) spontaneity and speed of scaling factor
abstraction, which occurs for the first time in training, and (b) use of absolute and not relative amount
to guide responses, information that is only at the initial stages of calculation in training. Performance
was above chance for both the first set and last set of trials of each type (73% and 81%, respectively)
(one-sample t-tests against chance yield ts(15) = 4.39 and 5.83, both ps < .005, one-tailed), indicating
that children did not require much training to understand and apply the halving transformation. There
was no significant improvement from the first set of trials to the last set of trials (paired-sample t-test:
t(15) = 1.43, p = .17).

Discussion

The results from this experiment indicate that children with no formal training in division
were able to perform a non-symbolic division process of halving the numerosity of an array. This
accomplishment required little or no training; children were able to perform the task successfully
on the very first trials. Children’s above-chance performance on this task replicates the report of
non-symbolic halving of number by Barth and colleagues (2009) with a population that is 1 year
younger and confirms that success at calculating the outcome to these problems does not depend
on representations of spatial variables such as area, contour length, density, and item size but rather
depends on numerical amount per se. Finally, performance was modulated by the signature ratio limit
of the ANS, as in past studies (Barth et al., 2005; Lipton & Spelke, 2004; Pica, Lemer, Izard, & Dehaene,
2004). Children performed better on trials in which the computed outcome was more psychologically
distant from the comparison array. Nevertheless, the current experiment does not reveal whether
children have a general and flexible ability to divide quantities or an ability that is limited to the
simplest possible operation for scaling down numbers—that is, halving. The next experiment begins
to distinguish between these possibilities by investigating whether children can learn with equal ease
to divide quantities by a different factor, namely 4.
Experiment 2: Division by 4

Experiment 2 used the same method as Experiment 1 except as follows. Participants were 16
5-year-old (n = 8) and 6-year-old (n = 8) children (8 girls and 8 boys; age range = 60 months 11 days
to 75 months 28 days, mean age = 74 months) recruited from the same database as in Experiment
1. None of the participants had participated in Experiment 1 or had formal education in multiplication
or division. The introductory movie, training block, and testing block all portrayed or tested events in
which quantities were divided by 4 instead of 2. During the introductory movie, the participants saw
four rectangles join to form one rectangle. As in Experiment 1, the comparison arrays were equated for
item size and density during training and for area and contour length during testing. The quotients
across the experiments were held constant; for example, the Experiment 1 equation of 24/2 had an
Experiment 2 analog of 48/4. (Thus, all initial values were doubled.) For the particular values used
in this experiment, see Table 1.

Results

As in Experiment 1, each participant was given an average score for each set of trials whose com-
parison arrays were a particular distance from the correct outcome (/2.0, /1.5, ⁄1.5, or ⁄2.0). Overall
performance during training (76%) and testing (71%) was significantly above chance (one-sample
t-tests: ts(15) = 6.52 and 5.62, both ps < .005, one-tailed). We also calculated the number of children
whose individual performance was above chance (with an alpha level of .05) using a test proportion
of 67.8% (19/28 trials). Of the 16 children, 10 showed above-chance performance by this criterion (10
observed successes with a total N of 16, binomial sign test, p < .01). (Note that, as in Experiment 1, the
test proportion was not 50%, as is often the case for binomial sign tests, but rather was the more
stringent 67.8%). An ANOVA with block (training block or testing block) and distance (/2.0, /1.5,
⁄1.5, or ⁄2.0) as within-participant factors and gender (male or female) and age (60–72 months or
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72–84 months) as between-participant factors was performed over these scores. There were no main
effects of block, F(1, 12) = 0.77, p = .40, gender, F(1, 12) = 0.05, p = .83, or age, F(1, 12) = 0.85, p = .37.

There was a main effect of distance, F(3, 36) = 7.99, p < .001. Follow-up Bonferroni-corrected pair-
wise comparisons revealed that this effect was due to significantly lower performance in the ⁄1.5
distance trials (56%), which differed from the /2.0 distance trials (88%; p < .05) but not the /1.5 and
⁄2.0 trials (77% and 73%, respectively; ps = .27 and .17). The /2.0 distance trials were also significantly
or marginally significantly higher than the /1.5 trials (p = .05) and ⁄2.0 trials (p = .03). The /1.5 trials
differed marginally from the /2.0 trials but were similar to the other distance trials, and the ⁄2.0 trials
differed from the /2.0 trials (p = .03). As in Experiment 1, within-participant contrasts reveal a signif-
icant linear trend, F(1, 12) = 11.72, p < .01, reflecting overall better performance in the /2.0 and /1.5
distance trials compared with ⁄1.5 and ⁄2.0 distance trials, as well as a significant quadratic (i.e.,
U-shaped) trend, F(1, 12) = 15.04, p < .01, reflecting lower performance for /1.5 and ⁄1.5 trials relative
to /2.0 and ⁄1.5 trials. With the exception of the distance ⁄1.5 training and distance ⁄1.5 testing trials,
children performed significantly better than chance on all testing and training trial types (one-sample
t-tests: all ps < .05; see Fig. 2). Overall, children performed better when given comparison arrays that
differed by a factor of 2.0 (80% correct) than a factor of 1.5 (66%) (paired-samples t-test: t(15) = 3.89,
p = .001, one-tailed).

To test whether children learned the quartering operation only over the course of training, we tab-
ulated each participant’s percentage of correct responses for the first and last trials at each distance
trial type (correct /2.0, /1.5, ⁄1.5, or ⁄2.0) during the training block. Performance was above chance
for both the first set and last set of trials at each distance (73% and 81%, respectively) (one-sample
t-tests against chance yield ts(15) = 3.53 and 6.46, both ps < .005, one-tailed). Children did not show
significant improvement from the first trials to the last trials (t(15) = 1.09, p = .29).

Discussion

The findings of Experiment 2 indicate that non-symbolic division is not limited to the special case
of halving. Children were able to mentally quarter estimated numbers of objects after minimal expo-
sure to this transformation. Their performance exhibited the Weber ratio signature of the ANS, with
performance falling as ratio of the comparison array and correct outcome approached 1. The pattern
of data also indicates that participants overestimated the outcomes to these transformations.
Further analyses

A series of analyses were conducted across the data from the two experiments to address two
additional questions. First, did children’s success depend on alternative strategies that were not
division based? Second, did the operations of halving and quartering differ in difficulty for children?
This finding would be considered a signature of the approximate nature of the ANS and would mirror
the increased error with larger multiplication factors seen in McCrink and Spelke (2010). We consider
each question in turn.

Range-based strategies

Before we can conclude that children truly divided numbers by 2 or 4, we must examine whether
children used alternative strategies to solve these problems. Barth and colleagues (2009) found that
children who performed doubling in a similar task were sensitive to the relative extremity of compar-
ison values, consistent with the use of a range-based strategy of judging that the comparison array
was larger when it was especially large and smaller when it was especially small. That is, if children
were tabulating the range of comparison arrays they see during training, they could infer, using the
feedback given, that comparison arrays that are on the high end of the range are always the correct
answer and comparison arrays that are on the low end are always the incorrect answer. This initial
feedback could lead children to select comparison arrays with extremely high or low values as more
or less numerous, respectively, irrespective of what happened to the transformed initial value. To test
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whether the children in the current experiments used this range-based strategy, we performed three
sets of analyses.

First, children who followed a range-based strategy should perform at chance on the very first
training trials because they have not had experience with the range of values to be presented as
comparison arrays. Moreover, children’s performance should improve over the course of the training
session. As seen in the sections above, neither prediction was confirmed because children in both
experiments exhibited above-chance performance on the first set of training trials (73% for both
experiments), and one-tailed paired-samples t-tests indicated that they showed no improvement over
the training trials in either individual experiment. Children also showed no significant improvement
in an analysis comparing their performance on early versus late training trials across the two exper-
iments together, although there is a marginal trend toward better performance on later training trials
(81% correct performance on later trials, t(31) = –1.77, p = .09, one-tailed).

Second, a range strategy predicts chance performance on trials with comparison array values that
lie in the middle of the range. To test this prediction, participants’ scores were averaged for their per-
formance on test trial types in the middle of the range (the eight comparison array values that were
not especially large or small). Performance at midrange was 78% for Experiment 1 (one-sample t(15)
= 9.00, p < .01, one-tailed) and 66% for Experiment 2 (one-sample t(15) = 3.18, p < .01, one-tailed).
There is some evidence that children used range information given that their performance on
midrange values, although above chance, was still significantly lower than end-range values in both
experiments (78% vs. 86% for Experiment 1 and 66% vs. 77% for Experiment 2) (one-tailed t-tests: t
(15) = 2.84 and 1.99, both ps < .05). However, the above-chance performance observed on the early
trials and the midrange trials in each of these experiments reveals that range-based strategies do
not account for children’s success on the task.

Third, if children are using range information only, there will be two specific problems per exper-
iment in which their performance should be significantly below chance: 16/2 versus 12 and 16/2 versus
16 (for /2.0) and 32/4 versus 12 and 32/4 versus 16 (for /4.0). Because these comparison arrays reflect
the smallest set of possible values, if children are using only range information they will be misled into
avoiding these values when asked for the more numerous set.

Side-specific strategies

An additional potential source of bias in children’s responses is the possibility of a preference for
one type of array over another when answering which side has more objects (e.g., the transformed
array or the visible comparison array). This is a potential alternate reason for finding poorer
performance in the distance ⁄1.5 trials compared with the distance /1.5 trials; if children chose the
transformed array as more numerous by default, we would find the same pattern of data. For example,
when choosing whether the outcome to 16/2 is more numerous than 5 (a /1.5 distance trial) or 12
(a ⁄1.5 distance trial), a strategy of simply picking the transformed array would yield a correct answer
for the /1.5 distance trial and an incorrect answer for the ⁄1.5 distance trial. However, this strategy
cannot explain the pattern of overestimation we find. First, it cannot account for the percentages
correct in the distance ⁄1.5 trials (which are at 68% and 56% across testing and training for
Experiments 1 and 2, respectively); if children were drawn only to the transformed array, they would
have performed significantly below chance instead of at or marginally above chance. Second, if
children had a bias to pick the transformed array, it would be present throughout the experiment,
and it is not; children did not exhibit the same tendency on the critical test trials of distance /2.0
and distance ⁄2.0 (91% vs. 81% in Experiment 1 and 84% vs. 72% in Experiment 2) (paired-sample
t-tests: both ps > .05). It is possible that they exhibited this bias only when the critical comparison
at test was difficult in the distance 1.5 trials. However, that possibility entails that children had some
idea of what was behind the screen and had performed the scaling transformation. For example, when
faced with a value of 16 behind the occluder that undergoes a transformation, one would only find a
trial with a comparison array of 5 or 12 (correct /1.5 or correct ⁄1.5), challenging if one was comparing
this array with the correct outcome of 8. Thus, although we cannot conclusively say that this factor
exerted no effect on children’s performance, it does not account for any of the principal findings of
these experiments.
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Testing for Weber signature of non-symbolic numerical scaling

A process of numerical scaling over ANS representations would yield increased error, and
subsequently poorer performance, as the divisive factor increased in magnitude from 2 to 4. A
paired-samples t-test on overall performance indicates that children performed significantly better
in Experiment 1 (82%) than Experiment 2 (73%) (t(15) = 1.89, p = .039, one-tailed). This performance
profile provides some evidence for a non-symbolic scaling process that operates over representations
of approximate numerical magnitudes in one of two ways. First, the scaling factor itself may be
represented approximately, with greater noise in the representation of 4 than of 2. Second, to equate
the numbers to be compared, the initial amounts used in Experiment 2 were double those used in
Experiment 1, and so the greater error in Experiment 2 may stem from the greater error associated
with the larger initial quantities (we return to this point in the General Discussion). On either of these
accounts, the increased error provides evidence for the involvement of the ANS.
General discussion

The current experiments provide evidence for a type of non-symbolic division—an untrained and
flexible process of scaling down numerical values, independent from continuous extent variables, that
can be extended beyond the special case of halving an amount to the case of quartering as well.
Performance in both the halving and quartering conditions was subject to the Weber ratio modulation
signature, suggesting that the children recruited representations generated by the ANS. This scaling
process was over the variable of number per se; the process of joining several rectangles into one
rectangle to convey the divisive relationship allowed area and spatial dimensions to remain constant,
whereas the critical variable of number was scaled down by a factor of 2.0 (Experiment 1) or 4.0
(Experiment 2). This process suggests that children’s scaling is not limited to continuous spatial
amounts or to halving of a numerical array; children without formal training in division can flexibly
deploy multiple scaling factors over discrete approximate numerical amounts. Furthermore, unlike
symbolic scaling, in which there is an asymmetry in performance for multiplication and division,
children in this study exhibited halving (82%) and quartering (74%) performance that was indistin-
guishable when children were tasked with doubling (82%) and quadrupling (69%) in McCrink and
Spelke (2010), a pattern that supports the existence of a bi-directional non-symbolic scaling process.

Children overestimated the correct outcomes to the scaling transformations, as shown by their
relatively low or even chance-level performance when the comparison array differed from the out-
come by ⁄1.5 and a linear trend in both experiments for better performance when comparison arrays
were smaller than the correct outcome. For example, after viewing a problem such as 32/2, children
would find a comparison array of 24 (the correct outcome ⁄1.5) more confusable than a comparison
array of 10 (the correct outcome /1.5), suggesting that they had miscalculated the correct outcome
of 16 as something closer to 24. This overestimation speaks to a set of findings on operational
momentum (OM; McCrink et al., 2007), a phenomenon in which outcomes to numerical transforma-
tions are systematically biased in the direction (larger/smaller) of the operation being performed
(see also Katz & Knops, 2014; Knops, Viarouge, & Dehaene, 2009; Pinhas & Fischer, 2008). For example,
participants generate outcomes to addition problems that are too large and outcomes to subtraction
problems that are too small; this is likely due to a combination of factors such as incorrect compres-
sion and decompression of logarithmic representations of magnitudes (Chen & Verguts, 2012; but cf.
Knops, Dehaene, Berteletti, & Zorzi, 2014), spatial biases associated with the operational terms them-
selves (Pinhas, Shaki, & Fischer, 2014), and recruitment of saccadic networks that shift visuospatial
attention along a mental number line (Knops, Thirion, Hubbard, Michel, & Dehaene, 2009; Knops,
Zitzmann, & McCrink, 2013).

Recently, Katz and Knops (2014) found that adults performing non-symbolic multiplication and
division exhibit relative over- and underestimation of outcomes, respectively, an OM bias not seen
in the current study. In fact, the children here exhibited the opposite pattern to that observed in
adults, echoing the findings in Knops and colleagues (2013), who found an opposite OM tendency
in 8-year-olds whose reversal was tied to the presence of adult-like attention-reorienting capacities.



Fig. 2. Performance for the training and testing trials of Experiment 1 (halving task) and Experiment 2 (quartering task). Error
bars represent standard errors, and the dotted line indicates chance (50%). An asterisk indicates a < .05 level of significance.
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Because we did not have an attention task in the current design, we cannot say whether the same
effect drove these findings, but future work on scaling OM in childhood should include an
attention-orienting task as a potential variable of analysis to see whether the same pattern as that
found by Knops and colleagues holds. If so, this would be evidence that adding, subtracting, multiply-
ing, and dividing draw on a shared representational format such as a mental number line that is bound
to children’s developing attentional networks.

There is also a clear tendency for children to perform more poorly as the scaling factor moves from
one-half to one-quarter. Although it is not possible to pinpoint whether the performance decline is
due to the change in initial starting amount, final outcome, or scaling factor, we can examine the
patterns in this division study and those reported in McCrink and Spelke (2010) to gain insight as
to where the main source of variability is coming from. Between the ⁄2.0 and ⁄4.0 conditions poorer
performance could be due to a twofold change in the represented product as well as a twofold change
in the scaling factor, and between the /2.0 and /4.0 conditions it could be due to either a twofold
change in initial starting amount or a twofold change in scaling factor. However, the lack of a perfor-
mance difference can be telling as well, and here the comparison of performance for children who
doubled (in McCrink & Spelke, 2010) and halved (in the current study) becomes germane. The scaling
factor (2.0) and outcomes (ranging from 8 to 32) were constant, but the initial amount was four times
as large for halving problems. Yet, children’s performance was nearly identical (82% for both children
in McCrink & Spelke’s (2010) doubling condition and children in the current study’s halving
condition), suggesting that the main source of variability in representation comes from either the
outcomes, the scaling factor, or both.

Poorer performance as the scaling factor increases dovetails with work by Boyer and Levine (2012),
who presented 6- to 10-year-olds with a proportional analogy task in which children needed to exam-
ine a standard (a beak filled with x units juice/y units water) and choose which of two test stimuli
exemplified this same proportion. The authors varied how similar in size the test stimuli were to
the standard, with some trials exhibiting a low scaling factor (the test and standard were nearly the
same size) and some exhibiting a high scaling factor (the test and standard were quite disparate
and children needed to scale up or down greatly in order to succeed on the task). They found that
children exhibited poorer performance as the scaling factor increased, just as children in the current
investigation—and in McCrink and Spelke (2010)—performed more poorly as the scaling factor
increased. They also found that there was no difference in scaling up (when the test stimulus was lar-
ger than the standard) versus scaling down (when the test stimulus was smaller than the standard).

These similarities raise the possibility that the scaling mechanism found here and in the research of
Barth and colleagues (2009) and McCrink and Spelke (2010) is the same as that tapped into during
proportional analogy tasks. The process observed here may take as input numerical variables per
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se—representations generated by the ANS and used to support mathematical reasoning later in
life—but it does not do so exclusively. Further research could investigate whether there exists priming
or interference between spatial and numerical proportional reasoning, perhaps even despite differ-
ences in task specifics, which one would predict if the same mechanism is processing them both, as
indicated by research on neural representations of proportions (e.g., Jacob & Nieder, 2009a, 2009b).
However, if the partition of labor is such that the ANS both represents and manipulates number only,
and a more generic quantity system represents and manipulates spatial dimensions, there might be no
such effect.

It may also be the case that the similar pattern of decreased performance with higher scaling factor
is due to distinct processes operating in the concrete (e.g., spatial extent) and abstract (e.g., number)
domains and having proportional standards that are readily viewable versus remembered and repre-
sented. For example, when scaling by a larger factor in Boyer and colleagues’ (2008) task, children
must overcome greater perceptual dissimilarity when matching a proportional test display to the
standard. Thus, in the event of finding no relationship between the tasks, one possible experimental
next step would be to adapt the current task to spatial extent only (a la the continuous halving
condition in Barth et al., 2009) and determine whether children trained in division over spatial extent
are able to generalize this relationship to test items that require division over numerical extent. This
experimental design would also help to determine whether one type of scaling (spatial vs. numerical)
is more privileged than the other by examining the comparable performance levels during training
and ease of generalization at test after being trained on spatial versus numerical arrays.

What does one gain by separating out numerical magnitude per se? It has traditionally been the
case that work on the basic science of the ANS, and how children reason about abstract magnitude,
has led to discoveries that have impacted the world of applied developmental science. For example,
several laboratories have found a link between ANS acuity and certain math abilities later in schooling
(Bonny & Lourenco, 2013; Gilmore, McCarthy, & Spelke, 2010; Halberda, Mazzocco, & Feigenson, 2008;
Libertus, Feigenson, & Halberda, 2013; Starr, Libertus, & Brannon, 2013). There are now curricula for
preschoolers based on early estimation via the ANS (e.g., Big Math for Little Kids). Children who are just
entering school scaffold up to adding and subtracting using representations computed via the ANS
(Gilmore et al., 2007), and children in first grade show faster or more accurate performance of
symbolic exact addition after practicing non-symbolic approximate addition of discrete quantities
(but not continuous quantities) (Hyde, Khanum, & Spelke, 2014). Given these findings, we believe
that it is also important to detail if and how this system supports the fundamental mathematical
operations of division and multiplication.

The current evidence for an intuitive understanding of whole-number scaling stands in stark con-
trast to children’s often reported difficulty in learning symbolic division in school (Burns, 2007;
Campbell, 1997; Mauro, LeFevre, & Morris, 2003; Rich & Schmidt, 1997; Siegler, 1988). Children were
above chance on initial training trials and readily applied the scaling factors of one-half and
one-quarter to amounts that extended well beyond those on which they were initially trained. These
results suggest that the asymmetry in difficulty between symbolic multiplication and division is due
to factors that are specific to the teaching of symbolic division in school. These factors might include
the delay in teaching division relative to multiplication, the different ways in which the multiplication
and division operations are conceptualized by the teachers and implemented in symbol-manipulating
algorithms, or even the emphasis on rote memorization of multiplication but not division.

In fact, the current paradigm represents a step forward in studying proportional relationships at
this young age because it requires participants to scale a magnitude in a serial manner and then
explicitly generate a representation of the correct outcome. Whereas most proportional reasoning
experiments present children with a match-to-sample task, our experiments presented the math
problem x/y = z, in which participants needed to generate z. This presentation provides a link between
the analogical nature of previous work and the serial explicitly generative nature of symbolic
problems that children must master when learning division. Given that children use the ANS at the
beginning of their symbolic instruction on addition and subtraction (Gilmore et al., 2007), the format
presented here could provide a scaffold for reasoning about the relatively difficult concept of fractional
understanding in an intuitive fashion based on relations between whole numbers.
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These findings, therefore, provide a promising potential avenue for exploration in educational
settings and could make the scaling process associated with whole-number dividing into a transparent
starting point for discussing what will later be learned symbolically. Because multiplication and divi-
sion are inverse operations, the animated presentations used in the current experiments might help to
make that relationship more transparent. Indeed, because our initial training displays of objects
coalescing provided a powerful and concrete image, the use of these displays may provide one reason
why this current paradigm was so successful in eliciting good performance on the first training trials.
The coalescing of a large number of elements to form a smaller number may be a complement to the
‘‘basic conceptual primitive” of splitting proposed by Confrey (1994) as a model of multiplication.
Finally, this paradigm dissociates number and amount, which are often directly in conflict in common
starting division problems for grade-schoolers (Sophian et al., 1997), allowing children a more flexible
grasp of the dimension of number per se as being scaled.

In summary, the current findings support and enrich previous findings of untrained sensitivity to
proportional relationships among non-symbolically presented numbers, including previous evidence
that children excel at halving (Barth et al., 2009; Goswami, 1989; Mix et al., 1999; Spinillo & Bryant,
1991), that infants represent proportional relationships (Denison & Xu, 2010; Duffy et al., 2005;
McCrink & Wynn, 2007; Xu & Denison, 2009), and that non-human animals use rate matching and
other proportion-based techniques to optimize foraging (e.g., Harper, 1982; Leon & Gallistel, 1998).
They extend the suite of arithmetic abilities that use representations generated by the ANS, illustrate
a flexibility with dividing amounts that has not been observed beyond the special case of one-half, and
provide a starting conceptual framework that may help children to understand a challenging topic in
formal mathematics.
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