
287

C H A P T E R

Space, Time and Number in the Brain.
DOI: ©  Elsevier Inc. All rights reserved.201110.1016/B978-0-12-385948-8.00018-9

Natural Number and Natural 
Geometry

Elizabeth S. Spelke
Harvard University, Cambridge, USA

18

Summary
How does the human brain support abstract concepts such as seven or square? Studies of non-
human animals, of human infants, and of children and adults in diverse cultures suggest these 
concepts arise from a set of cognitive systems that are phylogenetically ancient, innate, and uni-
versal across humans: systems of core knowledge. Two of these systems—for tracking small num-
bers of objects and for assessing, comparing and combining the approximate cardinal values of 
sets—capture the primary information in the system of positive integers. Two other systems—for 
representing the shapes of small-scale forms and the distances and directions of surfaces in the 
large-scale navigable layout—capture the primary information in the system of Euclidean plane 
geometry. As children learn language and other symbol systems, they begin to combine their 
core numerical and geometrical representations productively, in uniquely human ways. These 
combinations may give rise to the first truly abstract concepts at the foundations of mathematics.

For millenia, philosophers and scientists have pondered the existence, nature and origins 
of abstract numerical and geometrical concepts, because these concepts have striking features. 
First, the integers, and the figures of the Euclidean plane, are so intuitive to human adults that 
the systems underlying them are called “natural number” and, by some, “natural geometry” 
[1]. Second, these two systems are extremely useful: it is hard to find any important human 
cultural achievement—from money to measurement, to the arts, sciences, and mathemat-
ics—that does not depend on them. Third, these conceptual systems are simple: five postu-
lates, together with some general axioms of logic, suffice to define all the objects of Euclidean 
geometry, and an even smaller set of postulates defines the positive integers. It is perhaps not 
surprising, therefore, that explorations of the origins of abstract concepts, from Plato [2] and 
Kant [3] to Piaget [4] and Carey [5], often use number or geometry as case studies.
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Although natural number and natural geometry are important, intuitive, and formally 
simple, they are also highly puzzling from the standpoint of psychology and neuroscience. 
One puzzle concerns the sources of these concepts. Most concepts, like crow and cell phone, 
appear to be shaped by experience, but it is far from obvious how experience could pro-
duce these abstract concepts. All our perceptions have finite resolution, yet the objects of 
Euclidean geometry are points so small they have no extent, and lines so thin they have no 
thickness. All our actions, moreover, have finite extent and duration, yet we conceive of lines 
as infinitely long and of integers as arrayed in an endless sequence. A second puzzle con-
cerns the application of these concepts. Most concepts apply to some things but not others: 
cow applies to cows and brown to a property of brown things. In contrast, concepts of number 
and geometry apply to everything: anything that we can conceive of at all can be character-
ized with numerical or spatial terms (seven samurai, seas or sins; a distant village, era, or cousin).

Where do these concepts come from? Despite the efforts of the world’s greatest thinkers 
and experimenters, from Socrates to Helmholtz, this question has not been answered [6].  
I believe, however, that it can be addressed by research that takes four comparative 
approaches. First, comparisons across species tracing continuity and change in the evolution 
of spatial and numerical abilities. Second, comparisons over human development can trace 
both the origins of these abilities and their changes with growth and education. Third, com-
parisons across cultures, or across individual humans with different degrees of access to the 
products of their culture, can elucidate universal and variable aspects of these abilities. Fourth, 
comparisons across levels of analysis, from cognition and action to brain systems, neurons 
and genes, can probe the systems on which our spatial and numerical concepts depend.

These strands of research provide converging evidence for at least four cognitive systems 
that are sources of our numerical and geometrical intuitions: a system for comparing and 
combining sets based on their cardinal values, a system for selecting and tracking small num-
bers of numerically distinct individuals, a system for representing the shape of the large-scale 
layout so as to determine one’s own position, and a system for distinguishing the shapes of 
small-scale objects and visual forms so as to identify objects of particular kinds. Each of these 
systems has a long evolutionary history; none is unique to humans. Each system emerges 
early in development, largely independently of any specific experiences with the entities to 
which it applies. Above all, each of the systems has genuine numerical or spatial content on 
which we draw when we learn and perform symbolic mathematics. Because they are innate 
systems with mathematical content, I will call them core systems of number and geometry.

This chapter begins with a brief review of the evidence for the existence and properties of 
two of these core knowledge systems. Drawing on this evidence, I suggest that research has 
effectively addressed two of the more difficult problems in cognitive science: the problem 
of determining the content of non-linguistic representations, and the problem of determin-
ing the role of innate capacities in the development of those representations. Solutions to 
both problems hinge critically on the discovery that these systems are shared by humans 
and nonhuman animals. Thus, studies of educated humans shed light on animal minds, and 
studies of animals shed light on the development of human concepts.

This review will also elucidate two properties of these systems that distinguish them from 
truly abstract number and geometry: each system captures some but not all of the properties 
of natural number and Euclidean geometry, and each system applies to some but not all of the 
objects to which our abstract mathematical concepts apply. I conclude that no core system, by 
itself, accounts for our capacity to learn and use these fully abstract concepts. Finally, I offer 
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two suggestions concerning the latter capacity: children and adults build systems of abstract 
number and geometry by productively combining the outputs of these four systems, and this 
process depends, in some way, on the acquisition and use of natural language.

A Core System of Number

An experiment by Izard et al. [7] serves to introduce the first core system. Newborn 
infants in a hospital nursery were presented with a series of syllable trains varying in pitch 
and duration. Across the different trains, the particular repeating syllable changed but the 
number of syllables per train was constant: four for half the infants and 12 for the others. 
After 2 min, a visual array of either four or 12 objects appeared on a large video screen (Fig. 
18.1A). To ensure that no non-numerical variables connected these sounds to either array, 
the trains of four and 12 syllables were equated in extensive variables (train duration, total 
amount of sound) and differed in intensive variables (syllable frequency, duration of indi-
vidual syllables), whereas the arrays of visible objects were equated in intensive variables 
(item size and density) and differed in extensive variables (array size, total amount of filled 
area on the screen). Across trials, the number of objects alternated between four and 12 
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Figure 18.1  (A) Auditory and visual displays for an experiment on number representations by newborn 
infants, and (B) infants’ looking times to the visual arrays that corresponded or differed in number from the accom-
panying auditory sequences ([7], reprinted with permission from PNAS).
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while the syllable trains continued, and infants’ looking time at each array was recorded, 
guided by findings that infants tend to look longer at visual arrays that correspond to an 
ongoing sound sequence (e.g., [8]). The newborn infants looked longer at the numerically 
corresponding visual arrays, detecting the numerical relationship between the auditory 
temporal sequences and visual spatial arrays (Fig. 18.1B, left).

Many experiments, conducted over the last decade, support the conclusion that prelin-
guistic infants are sensitive to number in spatial arrays (e.g., [9–11]) and temporal sequences 
(e.g., [12,13]). Evidence for these abilities comes from experiments using a variety of meas-
ures including preferential looking (e.g., Brannon, Chapter 14 of this volume), habituation 
of looking time (e.g., [9]), anticipatory head turning (e.g., [12]), exploratory reaching (e.g., 
[14]), and the neuroimaging measures of electroencephalography (e.g., [15,16]) and near 
infrared spectroscopy (e.g., [17]). Most important, this research reveals five important, non-
obvious signatures of infants’ numerical representations.

First, infants’ ability to discriminate one numerical value from another depends on the 
ratio of the two values. In Izard et al.’s studies, newborn infants reliably discriminated 
between numbers that differed by a ratio of 3 (12 vs 4, 18 vs 6) but performed markedly less 
well when numbers differed by a ratio of 2 (8 vs 4; Fig. 18.1B). Over the first year, the critical 
ratio drops to 2 at six months and to 1.5 at 9 to 10 months (e.g., [12,18]). Second, at any given 
age, infants show the same ratio limit for different types of arrays: an infant who can just 
discriminate arrays of 8 vs 16 dots also will just discriminate sequences of 8 vs 16 sounds 
or actions [12,13]. Third, infants do not only discriminate numbers but can order them [9] 
and add two successively presented numbers and compare their sum to a third number 
[10]. Comparison and addition accuracy appear to be subject to the same critical ratio limit 
as discrimination. Fourth, numerical discrimination is impaired or abolished when arrays 
are presented under conditions that favor the attentive selection and tracking of individual 
objects. Although six-month-old infants can discriminate arrays of 4 vs 8 dots or sounds, 
even older infants tend to fail this discrimination when presented with objects that appear 
individually and move sequentially out of view ([19], Feigenson, Chapter 2 of this volume). 
Moreover, when infants are presented with arrays containing just a few simultaneously pre-
sented objects, each of which can be tracked in parallel, they tend to focus attention on the 
objects and ignore the cardinal value of the set [20–22].1 Finally, infants spontaneously relate 
changes in number to changes in a different quantitative variable, line length. For exam-
ple, infants who are habituated to arrays of dots that progressively increase (or decrease) in 
number will generalize habituation to arrays consisting of a line that progressively increases 
(or decreases) in length [27].

These five signatures provide clues to the nature and limits of infants’ numerical rep-
resentations. In particular, the ratio signature suggests that infants represent number 

1 These findings have sometimes been taken to suggest that infants cannot represent the approximate cardinal 
values of small numerical magnitudes, but more recent evidence refutes that suggestion (e.g., [23,24], see 
Brannon, Chapter 14 of this volume). Approximate numerical representations extend to the smallest numbers, 
but they are inhibited by processes of attentive object tracking, both in infants and in adults ([16,25], Burr, 
Chapter 3 and Cavanagh, Chapter 12 of this volume). When stimulus variations block object-directed attention 
or present objects that are usually perceived in large collections, representations of small cardinal values 
emerge [14,26].
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imprecisely, and the evidence for a common ratio limit across diverse types of arrays and 
operations suggests that the source of the limit is to be found in the numerical system 
itself, which functions both to compare numerosities and to combine them in accord with 
the operations of arithmetic. For these reasons, this system has been called the Approximate 
Number System, or ANS: a term I will use hereafter. Infants’ failures to enumerate the objects 
to which they are attending suggest that their ANS does not make explicit the identity or 
properties of the individual entities that it enumerates. Indeed, representations of indivi
dual entities may block the operation of this system: infants can see the forest and the trees, 
but they may not readily see both at once. Finally, the linkage between representations of 
number and length suggest that this system of numerical representation is one part of a 
more general sensitivity to magnitude (Lourenco, Chapter 15 of this volume).

The five signatures also provide a means to track this system of representation over the 
time-scales of evolution and human development, across different cultures and tasks, and 
into the human and animal brain. Experiments reveal all five signatures in nonhuman pri-
mates, providing evidence that the ANS is not unique to humans (see Brannon, Chapter 14  
of this volume). Studies of children and adults in North America and Europe reveal the 
same five signatures, provided that the participants are tested under conditions that pre-
vent verbal counting or other symbolic forms of enumeration. Thus, the system persists  
over human development and education, although its precision increases with growth and 
learning (see [28]). Studies of adults in remote cultures, lacking formal education, again 
reveal these signatures, indicating that the system is maintained over the lifespan without 
support from instruction in mathematics. Finally, studies of human and animal brains at the 
levels of cortical regions and single neurons reveal these systems as well (see Chapters 8 
and 17 of this volume), opening the door to detailed studies of the neural coding of abstract 
number.

Armed with these findings, I believe it is now possible to address a vexed question: how 
can one determine the content of a mental representation as it is found in the mind of an 
infant, an animal, or a member of a culturally remote community? The research described 
above provides evidence that infants discriminate, compare, and combine arrays that edu-
cated adults would describe with numbers and arithmetic, but this evidence does not suffice 
to ensure that the arrays evoke number representations or arithmetic operations in infants. 
For example, consider infants’ perception not of number but of surface lightness. Research 
on visual development provides evidence that infants, like adults, perceive edges by detect-
ing abrupt luminance changes across visual arrays. Psychophysicists use mathematics to 
describe the mechanisms that detect these changes. We would not conclude, however, that 
infants who see contrast borders form representations of number: they perceive edges, not 
numbers. The fact that we can use mathematics to describe infants’ or animals’ responses to 
arrays of dots or sequences of sounds does not in itself imply that infants or animals repre-
sent number, because mathematics is a powerful tool for characterizing all the mental rep-
resentations formed by any creature. How can psychologists determine if representations of 
these arrays have numerical content?

The research reviewed above suggests an answer to this question. Tests of the signatures 
of the system found in infants and animals reveal that the ANS is shared in large part by 
older children and adults. School children and adults, however, also have symbolic systems 
for representing number: including number words, Arabic notation, number lines, and 



18.  Natural Number and Natural Geometry292

When preschool children first master 
number words and counting, they draw 
spontaneously on the ANS to solve new sym-
bolic problems. Asked to add two symbolic 
numbers and to compare the results to a third 
number that differs from the sum (Box 18.1 

Fig. 1, bottom left), children who have been 
taught no symbolic arithmetic perform above 
chance, as they do when they are presented 
instead with numbers instantiated non-sym-
bolically, as arrays of dots (Box 18.1 Fig. 1, 
top left). Moreover, children’s performance 
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Box 18.1 Figure 1  Example problems from tests of non-symbolic and symbolic addition (left). The 
accuracy of five-year-old children was affected by ratio on both tasks (top right), and performance on the two 
tasks was correlated (bottom right). Gilmore et al., 2007, 2010, and in review, reprinted with permission from 
Nature, and reprinted from Cognition, 115/3, Gilmore, C. K., McCarthy, S. E., & Spelke, E. S., Non-symbolic 
arithmetic abilities and mathematics achievement in the first year of formal schooling, 394–406, 2010, with per-
mission from Elsevier

Box 18.1

R E L AT I O N S H I P S  B E T W E E N  N O N - S Y M B O L I C  A N D 
S Y M B O L I C  N U M E R I C A L  C O G N I T I O N
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shows critical signatures of their performance 
with non-symbolic numbers, such as the ratio 
limit ([29]; Box 18.1 Fig. 1, top right). The chil-
dren who perform these problems best also 
perform better on non-symbolic problems, 
controlling for IQ and literacy ([31]; Box 18.1 
Fig. 1, bottom right). Similarly, when young 
children, or adults lacking formal educa-
tion, are introduced to a number line and are 
asked to place symbolic numbers on the line, 
their placements reveal the compressed pat-
tern observed with non-symbolic numerical 
arrays [32,33]. Thus the ANS provides usable 
information that guides children’s perform-
ance on symbolic number tasks.

When school children learn mathemat-
ics, moreover, individual differences in their 
non-symbolic numerical performance cor-
relate with individual differences in school 
mathematics achievement. In adolescents, 
the precision of the ANS retrodicts symbolic 
mathematics performance at seven years of 
age, controlling for IQ and performance in 
other school subjects [34]. Studies of adults 
with varying levels of schooling suggest that 
non-symbolic numerical representations are 
activated, exercised, and sharpened dur-
ing learning and performance of symbolic 
mathematics (Piazza, Chapter 17 in this vol-
ume). Moreover, children who perform bet-
ter on a non-symbolic addition task at the 
start of schooling go on to higher achieve-
ment in mathematics at the end of the first 

school year, controlling for IQ and literacy 
[30]. Symbolic and non-symbolic numerical 
representations therefore appear to have bidi-
rectional effects on each other, although these 
effects are not shown on all measures of non-
symbolic performance [35,36], and definitive 
claims about causal relationships must await 
the findings of training experiments.

Further evidence for a relation between 
ANS representations and symbolic numerical 
abilities comes from studies in neuropsychol-
ogy and cognitive neuroscience. Adults acti-
vate the same brain areas when they compare 
or operate on non-symbolic and symbolic 
numbers (see [28]; Piazza, Chapter 17 in this 
volume). When non-symbolic numerical abili-
ties are impaired by brain injury or transcranial 
magnetic stimulation, adults show correspond-
ing impairments on symbolic numerical tasks 
[37,38]. Most important, activation to dot 
arrays of a given number produces adapta-
tion of neural responses to symbolic arrays 
and the reverse [39], and fine-grained cortical 
responses to particular numbers of dots can be 
predicted from cortical responses to the corre-
sponding symbolic numbers [40].

All these findings provide evidence that 
ANS representations have numerical content 
for adults and children. Because these ANS 
representations are shared by infants and 
animals, it follows that infants and animals 
have representations with some numerical 
content as well.

Box 18.1  (cont’d)

other symbolic devices. Thus, we can ask whether the ANS found in infants or animals has 
numerical content by investigating whether, and how, ANS representations relate to the 
symbolic numerical representations that are unique to human children and adults. Three 
types of findings provide evidence for a close relationship between the ANS and symbolic 
numerical abilities (Box 18.1). These findings of course do not imply that infants or ani-
mals have the full array of numerical abilities found in educated adults. Nevertheless, they 
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provide evidence that the system by which infants and animals discriminate, compare, and 
combine arrays of discrete dots or sounds contains numerically relevant information.

In summary, research provides evidence for a core system of number. The system is 
present in newborn infants and in other animals [41], and therefore is not learned through 
experience counting, communicating about, or even manipulating sets of objects. The  
system, moreover, is a foundation for learning of symbolic mathematics. Nevertheless, 
the system has two striking limits. First, it is imprecise and therefore fails to support rep-
resentations such as exactly seven. Second, the system fails to operate under conditions in 
which objects are presented individually and can be attended to and tracked over time and 
occlusion. For both reasons, the ANS fails to represent explicitly the individual entities that 
comprise the set whose approximate cardinal value it registers, and it fails to capture the 
fundamental operation of adding one individual to a set.

A Core System of Geometry

Geometry is the measurement of the earth. True to this meaning, the first core system of 
geometry is a system by which navigating humans and animals compute their own posi-
tions, and those of significant objects, by measuring properties of the surrounding terrain. An 
experiment by Lee and Spelke [42] serves to introduce this system. Children (aged three to 
four years) were brought into a closed rectangular room with four corner panels (Fig. 18.2A). 
Because the room was uniformly colored and contained no distinctive, asymmetrically 
placed objects, only the relative lengths of the walls broke its four-fold symmetry, and no 
information distinguished any direction from its diagonal opposite. While children watched, 
a sticker was hidden at one corner, and then children turned with eyes closed until they 
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Figure 18.2  Displays and findings from studies of children’s search (A) in a rectangular room (after [42]), 
(B) in an isosceles triangular room after disorientation of the child (top) or the room (bottom; after [44]), (C) in a 
circular room with two columns against the wall (left) or offset from it (right; after [43], or (D) in a circular room 
in which the columns (left) were replaced by flat stripes (right; after [43]). Arrows indicate the location of a hidden 
object, and asterisks indicate the location(s) at which children searched for the object. Rooms are depicted from 
above (A–C) or from the side (D).
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were disoriented. Finally children were allowed to open their eyes and search for the sticker. 
Children used the shape of the room to confine their search to two corners: the correct loca-
tion and the opposite location with the same distance and directional relationships (e.g., the 
corner to the left of one of the two more distant walls). This finding provides evidence that 
children were sensitive to these properties of the shape of their surroundings.2

Although full disorientation rarely occurs during human navigation, experiments using 
reorientation tasks are valuable, because they reveal the information about the environment 
that navigators encode and rely on automatically (since children do not expect to be disori-
ented). As a consequence, a rich array of experiments has investigated children’s reorienta-
tion in diverse environments. Reorientation by room geometry is highly robust across age 
(from infancy to adulthood), across variations in room size and shape, and across variations 
in the nature and presence of landmarks (see [43], for review). As in the case of core number 
representations, however, the most interesting findings from studies of children’s reorienta-
tion concern not the existence of geometry-guided navigation but the signature limits on 
this capacity. These limits again provide clues to the nature of the representations that guide 
children’s navigation, and they allow investigators to track these representations across  
species, ages, cultures, tasks, and brain systems.

The first signature concerns the task-specificity of geometry-guided navigation: the system 
serves to locate the child in relation to her surroundings, but it does not directly specify the 
relative locations of movable objects. Elegant experiments by Lourenco and Huttenlocher [44] 
(see also [45,46]) reveal this limit. Children searched for an object hidden in one of the three 
corners of a triangular enclosure. In one condition, the child was disoriented while the enclo-
sure remained stationary (Fig. 18.2B, top). In a second condition, the child remained oriented, 
with eyes closed, while the enclosure was moved around her (Fig. 18.2B, bottom). Both condi-
tions ended with the same perceptible environment and behavioral instruction, but they pre-
sented different cognitive problems: determining one’s own position in a stable environment 
or relocating a displaced object. As in past research, children used the distances and directions 
of the triangular walls to reorient themselves, but they used only distance, not direction, to 
locate the displaced object in the rotated room. Searching for a displaced object is not simply 
more difficult, however: when an object is hidden at a distinctive landmark, children are bet-
ter able to use the landmark when they are oriented and it moves than when they are disori-
ented and it is stable [46]. Children use the distances and directions of surfaces to specify their 
own location but not as direct landmarks to the locations of hidden objects.

A second signature of this core geometry system concerns the kind of layout information 
that it accepts: children reorient by the distances and directions of extended surfaces but not 
by the distances and directions of freestanding objects, even large ones. A recent study by Lee 
and Spelke [43] (see also [47,48]) illustrates this limit. In a series of experiments, children were 

2 One question that is frequently raised in studies of spatial representation concerns the coordinate system 
within which information is represented: do navigating children represent the shape of their surroundings 
allocentrically (for example, as a rectangular room with two long and two short walls) or egocentrically (for 
example, as an array of surfaces standing at particular distances and directions from their current station 
point)? Although a great deal has been learned about the representations that guide navigation in children 
and animals, this question has proved to be very difficult to answer in this domain, as it is in the domain 
of visual form analysis discussed below. For this reason, I do not address questions concerning spatial 
reference frames and coordinate systems in this chapter.
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disoriented in a cylindrical environment with two large, stable columns that contrasted with 
the walls of the cylinder in brightness and color, positioned so that they both stood on one 
side of the room, separated by 90 degrees. When the columns stood flush against the cylindri-
cal wall of the room (Fig. 18.2C, left), children used them to reorient themselves and locate a 
hidden object, both when that object was hidden directly at one of the columns and when it 
was hidden elsewhere. When the columns were offset slightly from the walls, however, chil-
dren failed to use their positions to locate the hidden object. This failure did not stem from 
a failure to attend to or remember the relation of the object to the columns: if the object was 
hidden directly at one of the two columns, children searched only at the columns, showing 
that they appreciated their relevance to the task (Fig. 18.2C, right). Children failed, however, 
to confine their search to the column with the correct directional relationship to the child: e.g., 
the freestanding column on the left. Columns only specified the child’s position when they 
were placed flush against the walls, and therefore contributed to the shape of the room.

A third signature concerns the dimensionality of the information that children use to track their 
own positions: children reorient by the distances and directions of extended 3D surfaces but not 
by the distances and directions of extended 2D patterns. Another experiment by Lee and Spelke 
[43] reveals this limit (see also [48–50]). Children were tested in the same cylindrical environment 
as in the above studies. Instead of viewing two 3D columns against the wall (Fig. 18.2D, left), how-
ever, children were presented with two 2D patches on the walls (Fig. 18.2D, right): patches of the 
same angular size as the columns, made of the same material and contrasting dramatically from 
the surrounding walls in brightness, texture and color. When an object was hidden at one of these 
patches, children confined their search to the two patches, showing again that they detected them 
and appreciated their relevance for the task. As in the case of freestanding objects, however, chil-
dren searched equally at the correct patch (e.g., the patch on the right) and the incorrect patch (on 
the left). Although the patches were clearly detectable, they did not alter the shape of the cylindri-
cal environment so as to break its symmetry. Accordingly, the geometric navigation system did not 
analyze their distance and directional relationships to specify the position of the child (Box 18.2).

Research by Lourenco and Huttenlocher 
highlights the obliviousness of navigating 
children to 2D geometrical forms that could 
specify their own position [51,52]. Children 
were disoriented in a square room whose 
opposing walls displayed distinctive 2D pat-
terns (for example, crosses vs discs: see Box 
18.2 Fig. 1A–C). The patterns differed only in 
shape, but children did not reorient by this 
geometric information. In contrast, children 
confined their search to the two directionally 

consistent corners whenever the opposite 
walls were covered with forms of the same 
shape but of differing size and density (Box 
18.2 Fig. 1D). Children therefore reoriented 
by a contrast between large and small discs, 
but not by a contrast between discs and 
crosses or between discs and a blank wall.

What accounts for this pattern? When 
equidistant surfaces are covered by forms 
differing in size and density, the surface 
with larger forms appears closer to the 

Box 18.2

R E O R I E N TAT I O N  D E P E N D S  O N  3 D  B U T  N O T  2 D 
G E O M E T RY



A Core System of Geometry 297

Smaller
dots

Larger
dots

(A) (B)

(D) (E)

(C)

Box 18. 2 Figure 1  Displays and findings from studies of the effects, on children’s reorientation, 
of (A) the presence of a pattern, (B) the shapes of the pattern elements, (C) the shapes and colors of the 
pattern elements, or (D) the size and density of the pattern elements (Huttenlocher & Lourenco, 2007, 
and Lourenco et al., 2009, reprinted with permission from John Wiley and Sons, reprinted from Journal of 
Experimental Child Psychology, 104, Lourenco, S., Addy, D., & Huttenlocher, J., Location representation 
in enclosed spaces: What types of information afford young children an advantage? 313–325, 2009, with 
permission from Elsevier, and reprinted with permission from S. Lourenco, 2010). Rooms are shown from 
the side, arrows indicate the location of the hidden object, and asterisks indicate the locations at which 
children searched. In (E), pattern elements of different size and density were placed on the walls of a 
slightly elongated rectangle; children’s performance (depicted from above) depended on the pairings of 
patterns to wall lengths (after [53]).

Box 18.2  (cont’d)

viewer. Depth perception based on rela-
tive size begins in infancy [54], and it could 
lead children to perceive the square room 
as slightly rectangular, triggering the reori-
entation system. This interpretation leads to 
two predictions. First, children should reori-
ent in uniformly colored environments that 
are only very slightly rectangular (because 
the effect of relative size on depth is subtle). 
Second, relative size should interact pre-
dictably with other depth cues to enhance 
or diminish children’s reorientation. Lee et 
al. [55] confirmed both these predictions. In 
an unpatterned room, children successfully 

reoriented by a subtly rectangular shape 
(sides differing in an 8:9 ratio). When large 
and small discs were added to these walls, 
children reoriented successfully when larger 
discs adorned the closer walls, but not when 
they adorned the more distant walls (Box 
18.2 Fig. 1E). Flat geometrical patterns there-
fore serve as a depth cue, allowing children 
to reorient by a subtle, perceived difference 
in surface distance. Such patterns do not 
serve as independent information guiding 
children’s reorientation, however, for chil-
dren fail to reorient by them when the depth 
effect is cancelled.
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A fourth signature of the geometric navigation system concerns the primacy of the 
ground surface and its borders as information for one’s own position: children reorient 
effectively not only in enclosed environments with a distinctive shape, but in environments 
where the only distinctive shape is provided by a tiny rectangular frame or arrangement 
of bumps on the floor (Fig. 18.3A and B). In contrast, children fail to reorient by salient 2D 
contrast borders or by large freestanding columns connected by a raised barrier that simi-
larly constrains their motion but does not contact the ground (Fig. 18.3C and D) [57]). The 
system’s high sensitivity to subtle perturbations of the ground surface, coupled with its 
insensitivity to much larger vertical landmarks, provides evidence against a popular theory 
whereby reorientation depends on processes for matching brightness contrast borders in 2D 
panoramic images of the layout [56–58] (the experiments described in Box 18.2 provide fur-
ther evidence against this theory). Image-matching processes contribute to a wealth of navi-
gation processes in animals (e.g., [59]) and they may aid in landmark guidance in humans 
[60], but they do not account for the process by which children locate themselves within the 
larger spatial layout.

There are other features of this system, related to its automaticity and robustness over 
variations in attention (see [61,62]) and motion [43], but I will focus on only one final sig-
nature: this system is sensitive to two fundamental properties of Euclidean geometry—
distance and direction—but not to a third Euclidean property, angle. Children’s insensitivity 
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Figure 18.3  Displays and findings from studies of reorientation by subtle perturbations to the 3D layout on 
the ground surface (A and B), by a salient 2D figure on the ground surface (C), or by freestanding columns con-
nected by a frame that was offset from the ground and constrained children’s motion (D). Rooms are shown from 
the side; arrows indicate the location of the hidden object, and asterisks indicate the locations at which children 
searched (after [55]).



A Core System of Geometry 299

to the angles at which walls meet at corners was first shown by Hupbach and Nadel [63], 
who reported that 2 to 3-year-old children failed to reorient by the distinctive shape of a 
rhomboid environment consisting of four walls that were equal in length but met at une-
qual angles (Fig. 18.4A). In a recent replication and extension of this research, we found 
that such children were strikingly insensitive to angle when the four angles of a rhombus 
were presented in an array with no informative aspect ratio (Fig. 18.4B), and they remained 
insensitive to angle when tested in the simplest environments [64]. In one experiment, two 
corners of markedly different angle (an obtuse angle of 120 degrees and an acute angle of 
60 degrees) were placed opposite one another in a cylindrical room, each adjacent to one 
of four hiding containers (Fig. 18.4C and D). When an object was hidden in the container 
directly in front of the obtuse-angled corner, disoriented children searched only the two con-
tainers in front of corners, showing that they noticed the corners and appreciated their rel-
evance as landmarks. Nevertheless, the children searched those two containers equally: they 
didn’t use the angular difference between the corners to reorient themselves or to specify 
the object’s unique location.

As in the case of the core number system, these five signatures allow investigators to test 
for this system of geometry in other animals, in human adults in diverse cultures and cir-
cumstances, in specific systems in the brain, and even into the genes. For brevity, I will dis-
cuss only the first and the last two of these tests. Studies of reorientation began with the 
classic studies of Cheng and Gallistel [65] and Cheng [66], conducted on rats. Reorientation 
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Figure 18.4  Displays and findings from studies of reorientation by length and by angle in (A) a connected 
rhomboid environment (after [63]), (B) a circular environment containing a fragmented rhombus with no informa-
tive aspect ratio, or (C and D) a circular environment containing two angles differing in size and four hiding con-
tainers (not shown) in a symmetrical arrangement (after [64]). Displays are depicted from above; arrows indicate 
the location of the hidden object and asterisks indicate the locations where children searched. In (C), the object 
was hidden at one of the two containers nested within the angles, and children divided their search between those 
two containers; in (D), the object was hidden at one of the two containers displaced from the angles, and children 
divided their search between those two containers.
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by the shape of the environment has now been shown in a wide range of nonhuman ani-
mals, from primates to birds and even to ants [67] (see [61] for review). The literature is vast 
and complex, and studies that involve training give divergent findings, likely due to effects 
of training on attention to landmarks. Moreover, not all of the signatures have been tested 
in all animal species. Where untrained animals have been tested, however, they show the 
same signatures of reorientation found in children. Like children, for example, ants use 2D 
geometric patterns as beacons but reorient only by the 3D shape of the environment [67]. 
Moreover, newly hatched chicks reorient by the same patterns of subtle geometric informa-
tion as children, and they too use 2D patterns and large freestanding objects as beacons but 
fail to reorient by them [68] (Fig. 18.5). Mice show the same reorientation performance as 
children in square rooms containing patterning information evoking the relative size depth 
cue [69]. Rats are strikingly insensitive to angle when tested in rooms whose shape is per-
turbed so as to change angle information while holding length relations constant [70].

In research using neurophysiological methods, the same signatures have been found in the 
brains of navigating animals, in areas whose activity specifies the animal’s location, heading, 
or motion (see Burgess, Chapter 5 in this volume). The firing patterns of place cells in the hip-
pocampus, and of grid cells and boundary cells in the nearby entorhinal cortex, are systemati-
cally affected by the distance and direction of the walls of the chamber [71,72], but markedly 
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Figure 18.5  Displays and findings from studies of reorientation in chicks. Displays are depicted from the side; 
arrows indicate the location of the hidden object, and asterisks indicate the locations at which chicks searched. Chicks 
viewed the hiding of the object while confined in a transparent cylinder at the center of the room (depicted in A); for 
disorientation, a second cylinder with opaque walls was inserted in the first and chicks were turned (depicted in B). 
Then the opaque cylinder was lifted (C) and the cylinder was removed to allow the chick to search (D; after [68]).
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unaffected by the positions of freestanding objects [72] or the orientations of walls and angles 
of corners [73]. New research using neuroimaging methods provides indirect evidence for 
place and grid cells in humans as well, activated when humans learn object locations in a vir-
tual environment in relation to extended surface boundaries ([74]; Burgess, Chapter 5 in this 
volume). Hippocampal activity associated with learning an environmental location in relation 
to an extended surface in the virtual layout is markedly impervious to effects of attention and 
interference, in contrast to activity in other brain structures associated with learning a location 
in relation to a freestanding landmark object [75]. These studies show a remarkable conver-
gence across humans and rodents, and across behavioral and neurophysiological methods, in 
the core mechanisms for encoding the shape of the surrounding surface layout.

Finally, an exciting new line of research hints that the core system of geometry may 
have a specific genetic basis. Lakusta, Dessalegn  and Landau studied adults with Williams 
Syndrome (WS), a developmental disability stemming from a genetic deletion that produces 
a variety of structural and cognitive abnormalities including an especially impaired capacity 
for spatial reasoning [76]. WS adults perform a wide variety of spatial tasks at roughly the 
level of typical three-year-old children, but the reorientation task shows a different pattern. 
Lakusta et al. [76] tested the reorientation performance of adults with WS in a homogene-
ously colored, rectangular room and found complete failure: in contrast to all the studies 
reviewed above, WS adults searched the four corners of the room equally (Fig. 18.6A). Their 
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Figure 18.6  Displays and findings from studies of adults with WS who (A) were disoriented in a rectangular 
room with no landmarks, (B) remained oriented with eyes closed for a similar delay in the same room, or (C) were 
disoriented in a rectangular room with a single colored wall. For comparison, (D) and (E) show the performance of 
typical adults and young children in the same environment and test as (A; after [76]). Displays are depicted from 
above; arrows indicate the location of the hidden object. In A–C, numbers give the percentage search at each of the 
correct locations; in D and E, numbers give the percentage of search at either of the two geometrically correct loca-
tions (indicated by asterisks).
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performance did not stem from a failure to remember the location of the hidden object, 
because they performed well after a delay over which they remained oriented (Fig. 18.6B). 
Their performance also did not stem from any debilitating effects of the disorientation pro-
cedure, because they performed fairly well when tested, after disorientation, in a rectangu-
lar room with one distinctively colored wall (Fig. 18.6C). The reorientation performance of 
the adults with WS contrasted both with that of typical adults (Fig. 18.6D) and with that of 
typically developing children (Fig. 18.6E). Indeed, the experiments revealed a striking dou-
ble dissociation: whereas young children successfully navigated in accord with the shape of 
the environment and failed to navigate in accord with the colored wall, WS adults did the 
reverse. WS therefore seems to produce a specific deficit in the core system for navigating by 
layout geometry. Because WS is caused by a genetic deletion, and mouse models of WS have 
been developed [77], future experiments on mice can probe the mechanisms by which this 
cognitive system develops or goes awry.

These new findings raise a second vexed question in cognitive science: what are the 
effects of experience in a geometrically structured world, and of intrinsic, genetically speci-
fied developmental processes, on the emergence of this system of geometry? Questions 
concerning the innateness of knowledge systems are as thorny as questions concerning the 
content of those systems. In the case of human navigation by layout geometry, the debate 
has been particularly difficult to resolve, because children don’t begin to navigate inde-
pendently until the end of the first year. Children’s system of geometry-guided navigation 
is shared by other animals, however, so studies of animals can probe its developmental 
foundations. Studies of controlled-reared chicks by Chiandetti and Vallortigara reveal that 
the system develops independently of any experience in a geometrically structured surface 
layout. Chicks reared in a geometrically uninformative, cylindrical environment reorient by 
the distances and directions of extended surfaces as consistently as do chicks reared in rec-
tangular or asymmetrical environments [78], even on their first exposure to those surfaces 
(Vallortigara, Chapter 13 in this volume). The system for locating the self in relation to the 
distinctive shape of the surface layout therefore develops independently of any experience 
with layouts of distinctive shapes.

Research probing the innate foundations of human cognition is sometimes criticized as 
leading to an impasse: when a capacity is found to be innate, it is argued, there is no further 
research for developmental and comparative psychologists to do. Research on core geom-
etry provides an illuminating counterexample to this argument. Since Plato, thinkers have 
wondered about the effects of experience on the development of knowledge of geometry: 
would a lifetime spent navigating in environments that systematically violate Euclidean 
relationships change our geometrical intuitions? With the controlled rearing methods of 
Vallortigara and others, these questions can be addressed, and the literature on effects of 
controlled rearing on navigation already is yielding intriguing findings. In particular, Brown 
et al. [79] and Twyman et al. [80] have investigated effects, on navigating fish and mice, of 
rearing in a geometrically structured environment with one or more salient landmarks. Like 
Chiandetti and Vallortigara [78], Brown et al. [79] find that reorientation in accord with the 
distances and directions of surfaces is independent of experience in a geometrically struc-
tured environment (Twyman et al. did not test for this effect). In contrast, experiments in 
both labs reveal that navigation by landmarks is affected by rearing experience: animals 
reared with a distinctively colored wall in a stable position are more likely to use that wall 
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to guide their navigation. Research is therefore beginning to chart both the foundations and 
the malleability of cognitive mechanisms guiding navigation.

In summary, research provides evidence for a core system of geometry that emerges 
in human children soon after they begin to locomote independently, that is common to a 
broad range of animals, and that can develop independently of any prior experiences with 
the geometrical relationships that it analyzes. Like the core system of number, however, 
this system is limited. Although human adults use Euclidean geometry to characterize the  
shapes of freestanding objects and 2D forms arrayed at any orientation, this core system 
only applies to extended surfaces and privileges surfaces that border the ground over which 
we navigate. Whereas Euclidean geometry can be used for many purposes, this core sys-
tem only serves to specify the position and heading of the navigator with respect to the 
surrounding environment. And whereas Euclidean transformations (rigid displacements) 
preserve distance, angle and direction, this core system is blind to angle and preserves only 
information about surface distances and directions. Core geometry for navigation cannot be 
the sole source of our Euclidean geometrical intuitions.

More Core Systems

If the above two systems are not the sole sources of natural number and Euclidean geom-
etry, what other sources do we draw on? Research on human cognitive development, animal 
cognition, cognition across cultures, and cognitive neuroscience provides evidence for two 
more core systems of number and geometry. The second number system, whose nature and 
limits are described by Feigenson (Chapter 2 in this volume), serves to represent sets of up 
to three to four numerically distinct individuals, as well as the operation of adding one indi-
vidual to a set. The second geometry system, whose nature and limits are described by Izard 
(Chapter 19 in this volume), serves to represent the shapes of 2D visual forms and moveable 
objects, capturing the relations of length and angle that are invariant over changes in size.

Each of these systems is activated under conditions complementary to the conditions that 
activate the two core systems described above. Whereas core representations of numerical 
magnitudes are inhibited under conditions in which a small number of objects are attentively 
tracked, these are just the conditions that elicit activity in the second number system. And 
whereas core representations of layout geometry do not include the shapes of 2D patterns or 
freestanding objects, these are just the arrays that activate the system of visual form analy-
sis. Moreover, each of these systems captures information that the other system lacks. In the 
case of number, the first core system captures cardinal information across a broad range of 
values, but only does so imprecisely, whereas the second core number system captures the 
exact number of individuals in an array, but only when those numbers are small. In the case 
of geometry, the core system for navigation represents distance and direction but not angle, 
whereas the system for form analysis represents distance and angle but not the directional 
information that distinguishes a form from its mirror image (Izard, Chapter 19 in this volume).

The contrasting properties of the two core systems of number and geometry are summa-
rized in Fig. 18.7. This summary suggests that more powerful and abstract mathematical 
concepts could arise if the representations from the core systems could be productively com-
bined. If children could systematically combine representations of sets and their cardinal 
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values with representations of numerically distinct individuals, formed by successive addi-
tion of one, they could overcome both the ratio limit on the representation of cardinal val-
ues and the set size limit on the representation of individuals, representing sets of any size 
with exact cardinal values. Similarly, if children could systematically combine the geometric 
properties they extract from large-scale navigable layouts and from small-scale forms, they 
could overcome the limits on the domains of application of these systems and increase the 
power of their geometrical analyses. By combining these systems, children might navigate 
by angle as well as distance by viewing the extended surface layout through the lens of vis-
ual form analysis, as painters do. Moreover, children might distinguish forms and objects 
from their mirror images by viewing those forms and objects through the lens of geometry-
guided navigation, using real or mental rotation to view objects from changing perspectives. 
In the next two sections, I turn to evidence bearing on these possibilities.

Constructing Natural Number

Children appear to overcome the limits of the core number systems when they begin to 
use number words in natural language expressions and counting. For most children, count-
ing begins to be mastered at about two years of age, when children learn the first 10 or so 
words of the counting list. Initially, these words have little numerical meaning beyond the 
fact that they are elicited by the presence of a collection of objects (a display that is likely to 
activate representations of approximate cardinal values) and they are accompanied by ges-
tures of pointing to each object in turn (an activity that likely depends on attentive object 
tracking). At some point in the third year, most children learn that one designates a single 
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Figure 18.7  Contrasting properties of, and limits on, the core systems of number and geometry. Checks indi-
cate successful performance, and dashes indicate failures of performance, by (A) six-month-old infants whose 
numerical sensitivity is assessed with large or small numbers of objects, and (B) preschool children whose geo-
metrical sensitivity is assessed with large-scale layouts or small-scale forms.
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Figure 18.8  Successive steps in children’s learning of counting (after [5,81,82]), and a proposed account of 
these steps as the progressive combination of information from the two core systems of number.

object and that all the other number words designate a plurality of objects. Over the next 
year, children learn that two designates exactly two objects, and that three designates exactly 
three objects. Some children also learn that four designates exactly four objects, but children 
then abandon this pattern of piecemeal learning and make two related inductions: every 
word in the counting list designates a set of individuals with a unique cardinal value, and 
each cardinal value can be constructed through progressive addition of one. Figure 18.8 sug-
gests how children might learn this mapping by connecting each word in the counting list 
to representations from the two core number systems.

For most children, the language of number words and verbal counting appears to provide 
the critical system of symbols for combining the two core systems, and some evidence sug-
gests that language may be necessary for this construction (Box 18.3). Once natural number 
concepts are constructed, however, does language continue to play a role in their use? 
Intuition suggests that language plays no role in mature mathematical reasoning (see [89]). 
Contrary to this intuition, however, three sources of evidence suggest that language serves 
throughout life as the medium by which representations from the two distinct core systems 
of number are combined (Box 18.4). I believe the role played by language is small (consist-
ent with the intuitions of mathematicians), but crucial. All of the information supporting 
our numerical intuitions derives from the two core number systems, and these systems are 
fully independent of language. Nevertheless, the language of number words and quantified 
expressions may serve to link this information together. Absent language, human infants 
and other animals may have all the information they need to represent the natural numbers, 
but they may lack the means to assemble that information into a set of workable concepts.

Constructing Natural Geometry

Although the development of natural number has been subjected to intense investigation 
since the pioneering studies of Piaget [94] and Gelman and Gallistel [95], the development 
of Euclidean geometry has received less attention. Some experiments nevertheless provide 
clues to its development. Like counting, full Euclidean geometry develops in humans with or 
without formal education. Also like counting, its development requires a protracted process.
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Evidence for the spontaneous emergence of Euclidean geometry comes from three experi-
ments performed on the Munduruku, who lack both formal education and experience with 
symbolic maps. First, Munduruku adults and older children were asked to navigate to a 
specific location in a simplified 3D layout (a triangular arrangement of containers) when the 
location was indicated by means of a Euclidean, 2D map (three small forms in the shape of a 
similar triangle, oriented variably with respect to the environment: Fig. 18.9A). Over a set of 
trials that varied the shape of the triangle, the Munduruku used distance, angular and sense 
relationships to specify the 3D location [98]. In further tests, moreover, the Munduruku used 
information on the map indicating landmark objects as well: their performance was enhanced 
when the location indicated on the map was a form with a distinctive color and shape that 

The counting list learned by most chil-
dren is composed of words with the gram-
matical properties of quantifiers [83], but the 
relation of language to number is debated. 
Is language merely a convenient source of 
symbols for combining information from 
the two number systems so as to enumerate 
entities exactly, or is it necessary for the con-
struction of natural number concepts?

Children and adults in remote cultures, 
whose languages lack words for most num-
bers, tend to preserve approximate, but not 
exact, numerical equivalence when matching 
numbers larger than three [84,85] (cf. [86,87]). 
The interpretation of these studies is debated, 
however, in part because of the difficulty of 
disentangling effects of language and culture 
on cognitive capacities and predispositions.

Deaf adults who live in a numerate cul-
ture, but who have little or no exposure to a 
deaf community and, therefore, speak no con-
ventional language, provide a different test 
of the role of language in the development of 
natural number and counting. Spaepen et al. 
[88] studied four adults living in remote 
areas of Nicaragua, who communicate with 
their hearing families and friends through a 

gestural system called homesign [88]. These 
homesigners received no formal education, 
but they hold jobs and use and exchange 
money, possibly both by recognizing the dis-
tinctive appearances of different bills and 
coins and by recognizing Arabic notation to 
some degree. When the homesigners com-
municate about number, they do not count 
or make tally marks. Although they use their 
fingers to convey numerical information, 
they do so with only approximate accuracy. 
Finally, they perform non-symbolic numeri-
cal matching tasks with approximate but 
not exact accuracy. These findings suggest 
a special role for language in the construc-
tion of natural number, but they leave many 
questions open. First, it is not clear which of 
the many aspects of language that are avail-
able to hearing people and to deaf speakers of  
sign language, but not to homesigners, 
are critical for the development of natural 
number concepts. Moreover, it is not clear 
whether language is necessary for the con-
struction of natural number concepts or 
whether other symbolic systems, also not 
available to these homesigners, could support 
this construction.

Box 18.3

I S  L A N G U A G E  N E C E S S A RY  F O R  T H E 
C O N S T R U C T I O N  O F  N AT U R A L  N U M B E R ?
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conformed to the color and shape of a landmark in the 3D array. As in non-symbolic naviga-
tion tasks, representations of landmarks and representations of layout geometry were found 
to be distinct and possibly mutually inhibitory: Munduruku showed higher sensitivity to the 
geometric information in maps when landmark information was absent [96].

Second, Izard et al. [99] presented Munduruku adults and children with a computer-ani-
mated depiction of a large-scale spatial layout consisting of two locations, described as vil-
lages, on a textured surface that was either flat or curved. They were shown the directions of 
two paths leaving from each location; one was described as leading straight to the other vis-
ible village and the other was described as leading straight to a third, unseen village. Then 
participants were asked to determine both the location of the third village and the angle 
at which the two paths converged at that location. Across trials, the distance between the 
two visible villages and the angles of the paths varied. When the surface was planar, the 
Munduruku used both the distance between the villages and the angles formed by the paths 
that left them to specify the distance and angle of the third, unseen apex of the triangle. 
In particular, they produced angles whose size followed from the principle that the three 
angles of a planar triangle will sum to 180 degrees, in accord with Euclidean geometry, 
whereas the three angles of a triangle on a sphere will sum to a larger value [99] (see Izard, 
Chapter 19 in this volume).

Evidence for a role of language in 
mature numerical reasoning comes from 
experiments that compare educated adults’ 
performance of approximate symbolic arith-
metic (which could be supported by the ANS 
alone) to their performance of exact symbolic 
arithmetic (which goes beyond the limits of 
the ANS). First, educated adults who suffer 
language impairments often show impair-
ments in exact numerical reasoning, despite 
preserved approximate numerical abilities 
[37]. Second, bilingual adults who are taught 
new number facts in one of their languages 
show a cost if they must produce exact 
number facts in the untrained language, rela-
tive to performance in the trained language 
[90,91]. Third, adults who perform exact, but 
not approximate, mental arithmetic respond 

more slowly when the numbers they must 
add require more time to pronounce, even 
though the numbers are presented in Arabic 
notation, not as words [92]. If language 
merely scaffolded the acquisition of natural 
number concepts and abilities, and then was 
replaceable by other symbol systems, one 
would not expect adults to translate Arabic 
symbols into words for purposes of exact 
computation.

Despite this evidence, it is clear that non-
linguistic symbols contribute to numerical 
reasoning: arithmetic is far easier to perform 
with Arabic than with Roman numerals, and 
devices such as the abacus can greatly speed 
its execution [93]. The role of language in 
mature natural number concepts therefore 
continues to be debated.

Box 18.4

L A N G U A G E  A N D  N U M E R I C A L  R E A S O N I N G  I N 
E D U C AT E D  A D U LT S
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The third task presented the Munduruku with a series of questions about the behavior 
of abstract, dimensionless points and one-dimensional lines on a planar or spherical sur-
face. For this task, the visual displays were zoomed in so as to remove all perceptual differ-
ences between the planar and spherical surfaces: all questions about the behavior of points 
and lines on the plane vs the sphere therefore were accompanied by identical displays. The 
intuitions of the Munduruku about points and lines accorded well with the principles of 
Euclidean geometry when they were asked to consider the points and lines as lying on the 
planar surface. When they were presented with two non-parallel, short line segments, for 
example, they judged that two segments, if extended, would cross on only one side; when 
given an single line segment and a point that was displaced from the line on which the 
segment lay, they judged that a line could be placed through the point such that it never 
crossed another line [99] (Izard, Chapter 19 in this volume). The Munduruku also modu-
lated their judgments to some degree, but not fully, when asked to imagine the extensions 
of straight lines on the sphere: they judged that lines would cross on both sides of two vis-
ible segments, but they continued erroneously to judge that a line could be placed through 
a point such that it never crossed a second line. All these findings provide evidence that 
Euclidean geometry develops, by middle childhood, even in a culture lacking formal educa-
tion, rulers, or maps.

Studies of younger children suggest, nevertheless, that Euclidean geometry develops 
gradually over childhood. Shusterman et al. [97] presented versions of the Munduruku map 
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Figure 18.9  Geometric map tasks performed (A) by Munduruku adults and older children (after [96]), (B) by 
four-year-old U.S. children (after [97]), and (C) by six-year-old US children (after [98]). Arrows designate the target 
positions indicated on the maps (left); asterisks indicate the positions in the 3D arrays chosen by the participants 
(right). Across trials, the target location and the map orientation varied relative to the array. Maps were presented 
as participants faced away from the test arrays, so that a map and the array that it depicted were not simultane-
ously visible.
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task to four-year-old children in the US (Fig. 18.9B). Like the Munduruku, children per-
formed well when the target location was distinctive in color and shape, and they proved 
more sensitive to geometry when no distinctive landmarks were presented (see also [100]). 
Analyses of performance across the different shapes suggested, however, that children were 
not sensitive to all the geometric relationships detected by the Munduruku adults and older 
children. When the map consisted of three collinear but unequally spaced points, children 
reliably used the relative distances of the points on the map to distinguish among the simi-
larly spaced 3D objects. Children performed no better, however, when angle was added to 
distance information (in a triangular map), and they failed altogether to use sense informa-
tion to distinguish the two similar corners of an isosceles triangle. At four years, children 
may be sensitive only to distance in purely geometric maps. Further experiments suggest a 
regular developmental progression in map understanding. At six years, children navigate 
by both distance and angle information in maps [98] (Fig. 18.9C), but they still fail to navi-
gate by sense information, as adults do [96].

Studies using the tests developed for the Munduruku, provide further evidence that six-
year-old US children have only limited command of Euclidean geometry [99]. On the trian-
gle completion test with virtual villages on a flat surface, children’s placement of the third 
corner of the triangle was reasonably accurate, but their estimation of the angle at which the 
two paths met at that corner was not: children’s estimates were appropriately influenced 
by the distance between the two visible villages but not by the angles of the paths leading 
from them. On the intuitions task, moreover, six-year-old children performed poorly, and 
they failed to distinguish the properties of points and lines arrayed on planar or curved sur-
faces. Although Euclidean geometry develops in the absence of education or experience with 
maps, that development appears to be a long, protracted process that may begin with a focus 
on distance: the Euclidean property that is shared by the two core systems of geometry.

When children use a map, they display an ability to combine geometric information from 
two different systems: the core system for navigation that analyzes geometric information 
in the 3D layout in which they must place or find an object, and the core system for form 
analysis that analyzes information in the 2D image that serves as the map (Fig. 18.10). What 
allows children to make this link? Prior experience with maps evidently is not necessary, 
since it is unlikely that the Munduruku, or most of the young children in these studies, had 

Navigation by geometric maps 

2D geometry of small-
scale visual forms
(distance, angle) 

3D geometry of large-scale
surface layouts

(distance, direction)

Figure 18.10  Navigation by geometric maps in relation to the two core systems of geometry.
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ever used a map before. Both Munduruku adults and US children, however, can use lan-
guage to specify spatial locations. In all the above studies, the experimenter used object 
names and spatial terms to connect each form on the map to an object in the 3D layout (e.g., 
“Big Bird wants to sit in this chair [pointing to a dot on the map]. Can you put him in his 
favorite chair [pointing in the direction of the 3D array]?”). The act of using the same spatial 
expression to refer both to a 2D point and to a 3D position may have served to link these 
representations for children [101].

It is possible, therefore, that the spatial expressions of natural language initially serve 
to connect geometric information in 2D forms to geometric information in 3D naviga-
ble arrays. If that suggestion is correct, then there is a parallel between the construction of 
natural number and natural geometry: both would depend first on language, and then on 
other symbol systems (Arabic notation, number lines, maps). Far more research is needed, 
however, to explore the process by which children integrate information from the two core 
systems of geometry, and to test the roles of language and of other symbol systems in that 
process. I end by considering one line of research exploring a small corner of this terrain: 
studies of the role of spatial language in integrating representations of the shape of the lay-
out with representations of the positions of landmarks.

These experiments focused on children’s reorientation in a rectangular environment 
with one landmark that broke the rectangle’s symmetry: a single distinctively colored wall. 
Although young children can use a colored wall to directly mark the location of a hidden 
object, they typically fail to use such a wall to guide their reorientation [44,48,50,51,57]. 
Young children use wall colors as beacons, and wall lengths and directions to specify their 
own position and heading, but they fail to combine these sources of information. Studies 
of older children reveal a change, however, at about the age when children begin to master 
spatial expressions involving the terms left and right. At about six years, children begin to 
reorient in accord with the lengths, directions and colors of walls. The development of this 
ability coincides with the acquisition of spatial language [102] and is enhanced by spatial 
language training [103], but these findings do not reveal the role that language plays. Does 
language serve as a medium for combining information about the spatial layout with infor-
mation about landmark objects?

Recent studies of adult speakers of Nicaraguan Sign Language (NSL) shed light on this 
question [104]. NSL is a new sign language that began to emerge in the 1970s, developed 
by children attending a new school for the deaf. It is now the primary language spoken by 
the school’s graduates. Importantly, the first cohort of graduates entered the school with 
a variable array of homesign gestural systems, and the common language on which they 
converged lacks many of the grammatical devices of fully developed signed or spoken lan-
guages. These first-cohort speakers have no consistent means for expressing or interpret-
ing spatial relationships such as left of X [105]. The second cohort of graduates entered the 
school at a later point in the development of NSL, and their language is richer and more 
lawful. Second-cohort speakers are more consistent in their use of expressions for left–right 
relationships, and they communicate these relationships more effectively [108]. Except for 
these language differences, however, members of the two cohorts are similar: all are adults 
who live in the same culture and communicate regularly with one another. They provide, 
therefore, an excellent population for studying whether differences in their spatial language 
lead to differences in performance on non-linguistic navigation tasks.
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To address this question, Pyers et al. [103] presented first- and second-cohort NSL speak-
ers with two spatial tasks: a reorientation task in a rectangular room with a single colored 
wall, and an oriented search task in which an object was hidden in a rectangular box with 
a single colored side that was then rotated on a table (Fig. 18.11). After completing both 
tasks, participants were asked to describe where the object was hidden, and their spatial 
expressions were coded. There were three principal findings. First, second-cohort signers 
performed markedly better than first-cohort signers on both spatial tasks, although per-
formance was well above chance (25%) for each group. Second, across the entire sample, use 
of the colored wall for reorientation correlated with one specific aspect of spatial language: 
the consistency of signing of expressions involving the relations left and right. Third, across 
the sample, use of the colored side of the box to locate the hidden object correlated with a 
different aspect of spatial language: the consistency of the positioning of the colored wall 
within the signing space. Importantly, neither language variable consistently predicted per-
formance on the opposite task. Thus, these correlations do not reflect individual differences 
in the overall proficiency of language or spatial cognition. They testify to more specific rela-
tionships between spatial language and spatial representation.

How might spatial expressions such as left of the tree serve to combine geometric and 
landmark information automatically and productively? These combinations may depend 
on three attainments achieved by speakers of any natural language [106]. First, speakers 
have learned a lexicon of words referring to entities in diverse cognitive domains includ-
ing objects (box, wall), properties (red), numbers (three), and spatial relationships (left, longer). 
Second, speakers have induced a set of rules for combining these words to form expres-
sions, and those rules are conditioned only by the grammatical properties of the words that 
they serve to combine, not by their content domains. Although red and long refer to proper-
ties in different cognitive domains, both are adjectives, and so for any grammatical expres-
sion that includes one (left of the long wall), there is a possible grammatical expression that 
includes the other (left of the red wall). Third, speakers who have learned the words and rules 
of a language can infer the meaning of an expression in the language the first time that they 
hear it, because the meanings of expressions follow from the meanings of their words and 
the rules for combining them. If one learns a new color term (say, chromium) and already 

92%

Reorientation

80%

Oriented search

Second
cohort

67% 62%
First

cohort

(A) (B)

Figure 18.11  The performance of first- and second-cohort speakers of Nicaraguan sign language on (A) a test 
of reorientation in a rectangular environment with one colored wall, and (B) a test of oriented search for an object 
in a rectangular box with one colored side, following rotation of the box (after [104]). Arrows indicate the location 
of the hidden object: numbers indicate the percentage of first searches at the correct hiding location.
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knows the meaning of phrases like the red tray, one needs no further learning to know the 
meaning of phrases like the chromium tray [107].

With these three properties, language could serve as the medium in which information 
about object properties, and information about the shape of the surrounding layout, could 
be productively combined. With a cognitive system for representing objects, children can 
learn terms like red and triangle by mapping words and expressions to object representa-
tions. And with a separate cognitive system for representing distances and directions in the 
navigable environment, children can learn terms like long and left by mapping words and 
expressions to representations of the extended surface layout. The combinatorial machin-
ery of natural language could then derive the meanings of expressions that combine these 
terms, and thereby serve as a medium in which information from these diverse represen-
tations is productively combined (Fig. 18.12A). On this account, as in the case of natural 
number, the information that guides adults’ navigation resides entirely in core systems for 
representing objects and the surface layout; language serves only to link information from 
these distinct systems together.

Perhaps, however, language plays a different role. When children learn an expression 
like left of the blue wall, they may gain a means for encoding properties of the environment 
that bypasses core representations altogether.3 Lakusta, Dessalegn and Landau’s stud-
ies of adults with Williams Syndrome shed light on this possibility. Recall that WS adults 
appear to lack altogether the core system of geometry for navigation: after disorientation, 
they show no ability to distinguish among the corners of a rectangular room by represent-
ing the distances and directions of its walls. In contrast, however, WS adults have relatively 
proficient language, including some spatial language, and considerable abilities to use the 
distinctive color of a wall to specify the location of a hidden object. If language serves to 

(A) Typically developing children (B) Children with WS

Layout
geometry

Forms &
objects

Layout
geometry
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Left of the red wall
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The red box The red boxLeft

?
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Figure 18.12  Schematic and simplified depiction of the possible learning (top) and use (bottom) of language 
to combine representations of layout geometry and landmark objects in (A) typical development and (B) Williams 
Syndrome.

3 I am grateful to Susan Carey for this suggestion (see also [5]).
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bypass geometric representations, then these two abilities should be related to one another 
as they are for Nicaraguan signers: WS adults with more consistent spatial language should 
be more consistent in their search to the left or right of a colored wall. Contrary to this pre-
diction, WS adults show no relation between the consistency of their spatial language and 
the consistency of their reorientation performance in a room with one colored wall. These 
findings support the view that language serves to combine core representations. In the 
absence of a core representation of layout geometry, spatial language cannot play this role 
(Fig. 18.12B), and it does not enhance navigation.

Conclusion and Prospects

Abstract concepts in general, and the concepts of natural number and geometry in partic-
ular, present a longstanding puzzle to the brain and cognitive sciences. Nevertheless, a rich 
array of studies in cognitive development, animal cognition, cognitive psychology, compar-
ative cultural psychology, and cognitive neuroscience is providing clues that may lead to its 
solution. Four cognitive systems found in infants, animals, and human adults across widely 
varying cultures give rise to representations with true numerical or geometrical content. 
The systems develop on the basis of little or no experience in numerically or geometrically 
structured environments, and therefore are innate. Abstract concepts of natural number and 
Euclidean geometry build on these systems of core knowledge.

Nevertheless, each of these four systems is limited in its domain of application (none is 
fully abstract) and in the information that it makes available (none has the power of the 
system of integers or of Euclidean geometry). The limits on the two core number systems, 
and on the two core geometry systems, are complementary: richer systems of number and 
geometry could be constructed if representations from the different core systems could 
be productively combined. Research suggests that children begin to make these combina-
tions in the preschool years. Thus, the most intuitive, abstract geometrical and numerical  
concepts that we possess as adults may not be given to us as infants; they may develop as 
children come to combine their core representations productively.

The processes that give rise to fundamental human conceptual integrations are only 
beginning to be explored. Some of the research reviewed in this chapter suggests that natu-
ral language plays a pivotal role in the development of abstract numerical and geometric 
concepts, and does so by serving as the primary medium for combining information pro-
ductively across distinct systems of core knowledge. These suggestions raise many ques-
tions, however, concerning the aspects of language that play this role, and the ways in 
which language interfaces with non-linguistic conceptual representations. Research is also 
needed to probe whether other symbolic devices can substitute for language and serve to 
combine core representations productively. Finally, research into other abstract concepts, in 
domains such as morality, politics or economics, is needed to explore whether core systems 
and productive combinatorial abilities produce a broad range of abstract concepts or apply 
more narrowly to the concepts of mathematics. By addressing such questions, research in 
cognitive science promises to elucidate the mechanisms by which humans go beyond the 
core knowledge systems that we share with other animals and construct truly abstract 
knowledge systems that are unique in the living world.
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