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Educated humans use language to express abstract number, ap-
plying the same number words to seven apples, whistles, or sins.
Is language or education the source of numerical abstraction?
Claims to the contrary must present evidence for numerical knowl-
edge that applies to disparate entities, in people who have re-
ceived no formal mathematics instruction and cannot express such
knowledge in words. Here we show that preschool children can
compare and add large sets of elements without counting, both
within a single visual-spatial modality (arrays of dots) and across
two modalities and formats (dot arrays and tone sequences). In
two experiments, children viewed animations and either compared
one visible array of dots to a second array or added two successive
dot arrays and compared the sum to a third array. In further
experiments, a dot array was replaced by a sequence of sounds, so
that participants had to integrate quantity information presented
aurally and visually. Children performed all tasks successfully,
without resorting to guessing strategies or responding to contin-
uous variables. Their accuracy varied with the ratio of the two
quantities: a signature of large, approximate number representa-
tions in adult humans and animals. Addition was as accurate as
comparison, even though children showed no relevant knowledge
when presented with symbolic versions of the addition tasks.
Abstract knowledge of number and addition therefore precedes,
and may guide, language-based instruction in mathematics.

cognition � development � numeracy � quantitative skills

The capacity to represent number precisely and to perform
exact arithmetic is unique to enculturated, educated humans,

and its development depends in part on verbal counting and
arithmetic instruction (1–3). Nevertheless, nonhuman primates
and preverbal human infants possess two forms of numerical
representation. First, they represent the exact number of objects
in a scene, up to a set size limit of three or four (4, 5). Second,
although the ability to represent exact number is restricted to
very small sets, infants and primates can represent and compare
the approximate cardinal values of large sets of objects or events,
with accuracy decreasing as the ratio of the compared numer-
osities approaches 1 (6, 7) and increasing over development (8, 9)
and training (10, 11).

What operations do these number representations support?
Infants and monkeys track small numbers of objects as they move
(12, 13), collect and bind information about object properties
(14), compute the effects of adding one object to a set (15, 16),
and compare two sets on the basis of number or continuous
amount (4, 5). Despite considerable research (see refs. 3, 17, and
18 for reviews), less is known about the operations supported by
large, approximate number representations. Untrained monkeys
compare large numbers of food objects (19), but their choices
might be based on total continuous amount of food rather than
number (see refs. 20 and 21 for discussion). Trained pigeons have
been claimed to subtract one sequence of events from another
(22), but this claim has been disputed (23). Finally, human adults
with minimal symbolic number knowledge, and infants and
preschool children with no mathematics instruction, compare,
add, and subtract large sets of elements in visual arrays (7,
24–27), but neither group has been tested in cross-modal tasks.
Here we investigate whether 5-year-old children, with no school
experience or relevant symbolic number knowledge, can per-

form arithmetic operations using abstract number representa-
tions permitting comparisons across modalities and formats.

Experiment 1 tested children’s ability to compare two arrays
of dots that differed by a ratio of 0.57, 0.67, or 0.8 (4:7, 4:6, or
4:5). Experiment 2 tested children’s ability to add two arrays of
dots and to compare their sum with a third array, when the sum
and the comparison array differed by one of the same three
ratios. Experiment 3, paralleling experiment 1, tested children’s
ability to compare the number of dots in a visual array with the
number of tones in an auditory sequence. Experiment 4 tested
children’s ability to add two arrays of dots and to compare their
sum with a sequence of tones. Experiment 5 investigated whether
the same children were capable of performing approximate
addition on verbally presented symbolic numerosities.

Experiment 1: Visual Comparison
Experiment 1 investigated whether 5-year-old children can com-
pare two large sets of dots on the basis of numerosity and
whether the accuracy of their comparisons depends on the ratio
of the two set sizes.

Method. Participants were 16 preschool children (age range from
5 years 0 months to 5 years 11 months; mean 5 years 3 months)
who were tested individually and videotaped throughout. Dis-
plays were presented on a PowerMac G4 computer (Apple
Computer, Cupertino, CA) with a GS790 color monitor (View-
Sonic, Los Angeles). The experimenter introduced the activity as
a computer game with dots, in which the child would guess
‘‘whether there [were] more blue dots or more red dots.’’
Children were tested with arrays of 10–58 equal-sized blue or red
dots presented too briefly for counting. Dots of two sizes (2 or
3 mm) appeared within virtual rectangular enclosures of two
sizes (�9 � 6 cm or 7 � 5 cm). Four practice problems
acclimated children to the procedure, followed immediately by
24 problems in which a set of blue dots moved behind an
occluder, then a set of red dots moved across the screen next to
the occluder, accompanied by a narration (Fig. 1a). One-half of
the problems were presented with a moving occluder and
one-half with moving blue dots, in alternating order. In moving-
occluder problems (total duration �9,450 ms), an array of blue
dots appeared on the lower left side (�1,300 ms), an occluder
appeared on the lower right (�1,300 ms) and moved leftward to
cover the dots (�1,450 ms), a pause ensued (�1,300 ms), and
then an array of red dots appeared on the upper right (�1,300
ms) and moved downward to rest (�2,150 ms). In moving-dots
problems (total duration �10,250 ms), the occluder appeared on
the lower left (�1,300 ms), an array of blue dots appeared above
it (�1,300 ms) and moved downward behind it (�1,450 ms), and
after a pause (�1,300 ms), the array of red dots appeared as
before. After the animation (with the dots no longer visible),
children were asked whether there were more blue dots or more
red dots. Children were given mildly positive feedback for all
responses, regardless of accuracy.

On the test problems, the numerosities of the sets differed by
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ratios of 0.57, 0.67, or 0.8; the red-dot array was more numerous
on half of the problems at each ratio. On half of the trials, dot
size, total contour length, summed dot area, and density were
negatively correlated with number (and, therefore, the size of the
virtual enclosing rectangle was positively correlated with num-
ber); on the remaining trials, the correlations were reversed.
Therefore, if children based their judgments on continuous
quantities, performance would be at chance overall and would
vary systematically across these subsets of trials.

Results. Across all problems, the children performed well above
chance [67%, t(15) � 6.454, P � 0.001], and performance varied
systematically as a function of the ratio of the two numerosities
(Fig. 2a). A 2 (response: blue larger vs. red larger) by 3 (ratio)
repeated measures ANOVA revealed a significant effect of ratio,
F(2, 30) � 12.239, P � 0.0005, and a linear contrast analysis
revealed that performance declined as the ratio approached 1,
F(1, 15) � 10.868, P � 0.005. There was no effect of response and
no interaction.

Accuracy was higher when the continuous variables of dot size,
total contour length, summed area, and density were negatively
correlated with number, and therefore when the size of the
enclosing virtual rectangle was positively correlated with number
[t(15) � 2.68, P � 0.02], although this effect cannot account for
children’s overall performance. Analyses of selected subsets of
trials revealed that children did not adopt a strategy of basing

responses on the presence of red or blue arrays that were
extremely large or small. Performance was above chance for the
trials that could not be answered correctly through the use of
these strategies [t(15) � 5.399, P � 0.0001]. Fig. 3a depicts
accuracy for trials containing extremely large or small sets vs.
trials containing no such sets.

Discussion. Experiment 1 provided evidence that 5-year-old
children can compare two dot arrays on the basis of numer-
osity. Controls within the experiment ensured that children’s
performance depended on the two numerosities, not on cor-
related continuous variables or guessing strategies. Perfor-
mance depended on the ratio of the two sets, a signature of the
nonsymbolic system of large-number representation found in
infants, nonhuman animals, and human adults (6–11, 28).
Accordingly, the next experiment investigated whether 5-year-
old children can transform such representations by the oper-
ation of addition.

Experiment 2: Visual Addition
Experiment 2 investigated whether preschool children can add
two successively presented arrays of dots and compare their sum
with a third dot array on the basis of number.

Method. Seventeen children (age range from 5 years 0 months to
5 years 9 months; mean 5 years 4 months) were presented with

Fig. 1. Schematic depictions of procedures and narrative for the four nonsymbolic tasks. (a) Comparison of visual arrays. (b) Addition and comparison of visual
arrays. (c) Comparison of visual arrays and auditory sequences. (d) Addition and comparison of visual arrays and auditory sequences.
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animated dot arrays instantiating addition problems (Fig. 1b),
following the method and procedure of experiment 1. After four
practice comparison trials, children received four practice addi-
tion trials followed by 24 test trials, each constructed so as to
parallel one of the test trials in experiment 1 (Fig. 1b). For each
trial (with total duration of �13,650 ms), a blue-dot array from
the comparison task was divided into two unequal subsets, each
less numerous than the comparison array, varying in magnitude
from 5 to 31. One subset of blue dots appeared on the lower left
(�1,300 ms), the occluder appeared on the right (�1,300 ms)
and moved leftward to cover it (�1,450 ms), and after a pause
(�650 ms), the second subset of blue dots appeared on the upper
left (�1,300 ms) and moved behind the occluder (�2,250 ms).
The array of red dots appeared �1,300 ms later in the upper right
(�1,300 ms) and moved downward (�2,150 ms), remaining in its
final position for �650 ms. These events combined the proce-
dures of the moving-occluder and moving-dots comparison trials
from experiment 1. Because the red-dot array was more numer-
ous than either blue-dot array but less numerous than the sum
of the blue-dot arrays on half of the trials, children could not
succeed at this task simply by comparing visible arrays. Because

each addition problem was constructed from a comparison
problem by dividing the blue-dot array in that problem into two
subsets, all of the controls for continuous variables and range-
based guessing strategies that were used in experiment 1 applied
to the present study as well. Therefore, children could not
succeed by assessing continuous variables or by following a
strategy of choosing an array as more (or less) numerous if it was
unusually large (or small).

Results. Children performed reliably above chance on the addi-
tion task [66%, t(16) � 6.227, P � 0.0001], and their perfor-
mance was reliably affected by the ratio of the sum to the
comparison array (see Fig. 2a). A 2 (response: sum more or less)
by 3 (ratio) repeated measures ANOVA revealed a significant
effect of ratio, F(2, 32) � 11.07, P � 0.0005, and a significant
linear trend of decreased accuracy as the ratio approached 1,
F(1, 16) � 18.501, P � 0.001. There was also a main effect of
response [F(1, 16) � 8.797, P � 0.01]; children showed a

Fig. 2. Accuracy data for the four nonsymbolic tasks. The error bars represent
95% confidence intervals. (a) Accuracy scores for experiments 1 and 2 are
plotted against the ratio of the numerosities to be compared (0.57 or 4:7, 0.67
or 4:6, and 0.8 or 4:5). (b) Accuracy scores for experiments 3 and 4 are plotted
against the ratio of the numerosities to be compared. (c) Overall accuracy for
all four experiments.

Fig. 3. Accuracy at each comparison ratio for trials including an extreme
value (a set near the low end or the high end of the range of numerosities
used) and for trials including only mid-range values for experiments 1–4.
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tendency to choose the sum as the larger quantity. Nevertheless,
children performed well above chance both on trials for which
the sum was more numerous than the comparison array and on
trials for which it was less numerous, [t(16) � 6.37, P � 0.001;
and t(16) � 1.82, P � 0.01, respectively], indicating that they did
not simply compare the red-dot array to a single blue-dot array
or judge that two arrays were more numerous than one.

Children again performed better on the subset of problems for
which dot size, total contour length, summed area, and density
were negatively correlated with numerosity, [t(16) � 5.23, P �
0.001], indicating an influence of total array size on perfor-
mance, but their success again cannot be explained by these
variables. Children did not base their responses on the range of
values presented in the two types of arrays (e.g., choosing the
red-dot array when it was particularly large), because perfor-
mance was above chance for the subset of trials that could not
be answered correctly by using range-based strategies [t(16) �
3.172, P � 0.003]. Fig. 3b depicts accuracy for trials containing
extremely large or small sets vs. trials containing no such sets.

Performance in experiment 2 was compared with that of
experiment 1 by a 2 (operation: comparison vs. addition) by 3
(ratio) mixed-factor ANOVA. This analysis revealed only a
significant effect of ratio, [F(2, 62) � 14.544, P � 0.0001], with
a significant linear trend of declining performance as the ratio
of the sum to the comparison number approached 1, [F(1, 31) �
17.272, P � 0.0001]. There was no main effect of operation and
no interaction: children performed the addition task as accu-
rately as the comparison task.

Discussion. Experiment 2 provides evidence that 5-year-old chil-
dren can add two arrays of dots and compare their sum with a
third dot array, even though only one array was visible at a time.
Because their successful performance varied with the ratio of the
sum to the comparison numerosity and could not be explained
either by responses to nonnumerical variables or by guessing
strategies, the findings suggest that children’s performance
depends on an abstract representation of number. The next
experiments tested that suggestion more directly by investigating
children’s comparison and addition of sets in two modalities and
formats: visual arrays and auditory sequences.

Experiment 3: Cross-Modal Comparison
Adults can compare sets of elements presented in different
modes and formats as easily as sets of elements presented in a
single mode and format (7, 25), but their success may depend on
years of experience with symbolic numbers and arithmetic.
Accordingly, experiment 3 tested preschool children’s ability to
compare visual arrays of dots with auditory sequences of tones.

Method. Sixteen children (age range from 4 years 9 months to 5
year 9 months; mean 5 years 4 months) completed a version of
the experiment 1 comparison task in which the red dots were
replaced by a series of tones presented too rapidly for counting
(either 30- or 50-ms tones, presented respectively at 93- or 50-ms
intervals). During a brief practice session, children saw two
demonstrations of the blue dots moving behind the blue box,
followed by two demonstrations of unoccluded dots paired with
a sound sequence of equal number, followed by two demonstra-
tions in which the sound sequence occurred after the red dots
were occluded. Then the task was introduced with a set of four
practice trials; both the red and the blue dots were revealed to
provide feedback on the child’s response. The final two practice
trials were easy problems with no uncovering of the dots after the
child’s guess and no feedback. The 24 experimental trials
followed (Fig. 1c), with two interspersed easy trials (not ana-
lyzed) to check on motivation and attention. The problems were
the same as those presented for visual comparison and addition.

Results. Children performed reliably above chance on the two-
modality comparison task [66%, t(15) � 7.409, P � 0.0001]. A
2 (response: more blue dots or more red dots) by 3 (ratio)
repeated measures ANOVA again revealed a main effect of ratio
[F(2, 30) � 5.685, P � 0.01; see Fig. 2b], and a significant linear
trend of declining performance as the ratio differences ap-
proached 1 [F(1, 15) � 9.288, P � 0.01]. There was no main effect
of response and no interaction: performance levels were the
same for the two types of continuous-quantity trials [t(15) � 1,
P � 0.05]. Children again did not rely on strategies based on
numerical range information because performance was above
chance for the subset of trials that could not be answered
correctly by using such strategies [t(15) � 5.965, P � 0.0001]. Fig.
3c depicts accuracy for trials containing extremely large or small
sets vs. trials containing no such sets.

Experiment 3 was compared with experiment 1 with a mixed-
factor 2 (format: visual vs. cross-modal) by 2 (response) by 3
(ratio) ANOVA, with the first factor between subjects. There
was a significant main effect of ratio [F(2, 60) � 12.34, P �
0.0005], but no main effects of response or format: participants’
responses were as accurate for cross-modal comparison as for
visual comparison. Nevertheless, there was a mildly significant
interaction of format and ratio [F(2, 60) � 4.518, P � 0.05],
indicating a steeper decline in cross-modal performance from
the largest to the middle ratio.

Discussion. Experiment 3 provides evidence that preschool chil-
dren, like adults, possess approximate number representations
that are not dependent on the modality or format of the stimuli
to be enumerated. In the next study, we extended this two-
modality paradigm to an addition task analogous to that of
experiment 2.

Experiment 4: Cross-Modal Addition
Experiment 4 tested whether preschool children can add two
successively presented visual arrays of dots and compare their
sum with a sequence of tones.

Method. Sixteen children (age range from 5 years 0 months to 5
years 11 months; mean 5 years 5 months) were given the
experiment 2 addition task with the comparison sequences of
tones used in experiment 3. Children received the initial practice
trials of experiment 3, followed by the practice addition trials of
experiment 2 with occluded red dots and tones presented as in
experiment 3. On each trial, a blue occluder and a red occluder
appeared on the screen. One group of blue dots moved behind
the blue occluder, followed by a second group of blue dots. Then,
as in experiment 3, participants heard a rapid, uncountable
sequence of tones, each one representing a red dot ‘‘hiding’’
behind the red occluder. With no dots visible, children decided
whether there were more blue dots or more hidden red dots (Fig.
1d). Addition problems were otherwise the same as in experi-
ment 2, with two easy problems (not analyzed) interspersed as
a check on motivation.

Results. Children performed reliably above chance on this task
[66%, t(15) � 7.595, P � 0.0001; Fig. 2b]. A 2 (response) by 3
(ratio) repeated measures ANOVA showed that the main effect
of ratio did not reach significance in this experiment [F(2, 30) �
3, P � 0.05], but there was a significant linear trend of decreased
accuracy as the ratio approached 1 [F(1, 15) � 5.14, P � 0.04].
There was a significant main effect of response [F(1, 15) � 4.621,
P � 0.05], with children tending to choose the sum as larger, but
this tendency again did not account for their successful perfor-
mance. As in experiment 3, performance levels were the same for
the two continuous-quantity trial types [t(15) � 1, P � 0.05].
Children’s performance again was above chance for the subset
of trials that could not be answered correctly by using strategies
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based on numerical range information [all t(15) � 4.213, P �
0.0004]; Fig. 3d depicts accuracy for trials containing extremely
large or small sets vs. trials containing no such sets.

Children responded as accurately in experiment 4 (cross-
modal addition) as in experiment 2 (visual addition). A 2
(format) by 2 (response) by 3 (ratio) mixed-factor ANOVA
revealed no effect of format. There were main effects of
response [F(1, 31) � 12.50, P � 0.001] and ratio [F(2, 62) �
11.92, P � 0.0.0005], with accuracy higher when the sum was
larger and accuracy decreasing as the ratio approached 1 [linear
trend, F(1, 31) � 21.49, P � 0.0005]. Moreover, children
responded as accurately at cross-modal addition (experiment 4)
as at cross-modal comparison (experiment 3): A similar ANOVA
comparing experiments 3 and 4 revealed no effect of operation
(comparison vs. addition; F(1, 30) � 1, P � 0.05), the same main
effects of response [F(1, 30) � 6.24, P � 0.05] and ratio [F(2,
60) � 7.49, P � 0.0.001], and the same linear trend of decreasing
accuracy as ratios approached 1 [F(1, 30) � 14.14, P � 0.001].

Fig. 2c shows overall accuracy for all four studies plotted
together. A 2 by 2 (modality by operation) mixed-factor ANOVA
comparing performance across all four studies revealed no effect
of either factor. Children performed as accurately in cross-modal
as in visual tasks, and they performed the addition tasks as well
as the comparison tasks.

Discussion. Experiment 4 provides previously undescribed evi-
dence for abstract, large-number addition in preschool children.
Children were able to add the numbers of elements in two visual
arrays and compare their sum to a sequence of tones. Because
the children had received no formal arithmetic instruction, this
ability likely depended on nonsymbolic number knowledge. The
last experiment tested this possibility more directly by investi-
gating children’s verbal knowledge of the addition facts tested in
experiments 2 and 4.

Experiment 5: Symbolic Arithmetic
Could the successes of experiments 1–4 be based in children’s
knowledge of symbolic arithmetic? Although none of the par-
ticipants in these experiments had received formal arithmetic
instruction, many children learn simple arithmetic facts sponta-
neously, before they begin school (29, 30). Such children clearly
would fail to solve exact arithmetic problems involving numer-
osities as large as those presented here, but their ability to give
approximate answers to large-number problems, to our knowl-
edge, has never been tested. Therefore, it is possible that children
estimated the symbolic numerosity of each dot array that was
presented and performed rough symbolic addition on these
estimates. In an initial attempt to assess the plausibility of this
alternative, the last experiment tested participants’ knowledge of
approximate symbolic addition.

Method. Thirty-three children (age range from 5 years 11
months to 5 years 9 months, mean 5 years 5 months) partic-
ipated in this test after participating in experiment 1 or 2. The
test consisted of one familiar control problem (2 � 2 � 4 vs.
8 or 5 � 5 � 10 vs. 6) and three experimental problems by using
numbers from selected nonsymbolic addition problems, one at
each ratio (e.g., 16 � 17 � 33 vs. 58 or 27 � 31 � 58 vs. 33).
First, the experimenter presented an addition problem (e.g.,
‘‘If your mom gave you 27 marshmallows, and then she gave
you 31 more, how many would you have?’’), and the child was
encouraged to generate an answer. Then the experimenter
asked the child to choose between the correct answer and the
answer corresponding to the comparison numerosity in the
nonsymbolic problem from which it was derived (e.g., ‘‘Would
it be more like 58 or 33?’’). The order of presentation of the
problems and of the correct answer vs. the foil were counter-
balanced. If children’s performance in experiment 2 was based

on knowledge of symbolic arithmetic, then they should solve
these two-choice verbal problems above chance, and their
performance should depend on the ratio of the sum to the
comparison array.

Results. Although children correctly answered the control prob-
lems on most trials (73%), they never guessed the answer to the
test problems at either the 4:7 or 2:3 ratio and rarely guessed the
correct answer to the 4:5 problem (12% of trials). Performance
on control and test problems differed reliably [paired-samples
t(32) � 9.0, P � 0.001]. On the two-choice follow-up test,
children chose the correct answer at a rate significantly higher
than chance for the control problems (88%, binomial P � 0.001)
but not for the test problems at any of the three ratios (all P �
0.2). Performance on the control and test problems again
differed reliably, paired-samples [t(32) � 4.67, P � 0.001].
Finally, a one-way repeated, measures ANOVA revealed no
effect of ratio on children’s two-choice responses, [F(2, 64) �
1.62, P � 0.2], and a linear trend opposite in direction to that
predicted by the ratio signature.

Discussion. Children’s successful performance on the control
problems provides evidence that they understood the verbal
problems and were motivated to solve them. In contrast, chil-
dren’s failure on the unfamiliar, large-number problems suggests
that they had little knowledge of symbolic arithmetic. Moreover,
children’s performance on the symbolic problems did not show
the ratio signature of large number representations found in
studies of adults, infants, and nonhuman animals as well as in
experiments 1 and 2. Children’s poor performance and the
absence of a ratio signature provide evidence that different
processes underlie children’s performance of nonsymbolic and
symbolic arithmetic in these experiments. In particular, the
ability to perform nonsymbolic addition does not depend on
knowledge of the symbolic arithmetic facts instantiated in the
nonsymbolic problems.

General Discussion
The present findings reveal that 5-year-old children can compare
and add numerical quantities. Children base their responses on
number rather than on continuous quantities that typically are
correlated with number, and they focus their comparisons on the
arrays that are presented within a problem rather than on
guessing strategies based on the range of values presented across
the set of problems. Children also readily solve numerical tasks
that require the integration of quantity information presented in
different modalities: accuracy for addition and comparison with
two modalities was as high as accuracy for addition and com-
parison with a single modality. Children’s nonsymbolic addition
and comparison performance shows the ratio signature of large
approximate number representations, adding to the evidence
that children use the same system of representation found in
human infants (8, 9, 24, 31), nonhuman animals (e.g., 10, 32), and
adults (6, 7).

Previous studies have found that adults were successful at
nonsymbolic comparison and addition tasks, both within and
across modalities (6, 7), but adults’ symbolic number knowledge
might have contributed to this ability. However, 5-year-old
children are able to perform very similar tasks in the absence of
such knowledge. A comparison of performance on tasks of
symbolic and nonsymbolic addition, using the same numerical
values and the same children, reveals a striking difference:
Although children performed the nonsymbolic addition prob-
lems well above chance (experiment 2), they performed at
chance on symbolic versions of these problems (experiment 5).
In accord with evidence from studies of human infants and
nonhuman primates using purely visual arrays (24, 33), these
findings provide evidence that abstract approximate number
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representations can enter into arithmetic operations in the
absence of knowledge of the relevant symbolic arithmetic facts.
Children compare and add quantities presented in distinct
modalities before they begin formal arithmetic instruction. This
is a surprising finding, given that many school-age children have
considerable difficulty learning symbolic arithmetic. Our find-
ings offer the promise that new strategies in elementary math-
ematics education might be devised: strategies that harness

children’s preexisting arithmetic intuitions to foster the acqui-
sition of symbolic number knowledge.
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