
These data show that Dam– Salmonella sur-
vive in Peyer’s patches of the mouse small
intestine for at least 5 days, providing an
opportunity for elicitation of a host immune
response. Dam– Salmonella, however, were
unable to cause disease; they either were
unable to invade systemic tissues or were
able to invade but could not survive.

DNA adenine methylases are potentially
excellent targets for both vaccines and anti-
microbials. They are highly conserved in
many pathogenic bacteria that cause signifi-
cant morbidity and mortality, such as Vibrio
cholerae (21), Salmonella typhi (22), patho-
genic E. coli (23), Yersinia pestis (22), Hae-
mophilus influenzae (24), and Treponema
pallidum (25). In addition, because Dam is a
global regulator of genes expressed during
infection (Fig. 1), Dam– mutants may ectopi-
cally express multiple immunogens that are
processed and presented to the immune sys-
tem. Such ectopic expression could elicit a
cross-protective immune response between
related bacterial strains that share common
epitopes. Finally, because the Dam methylase
is essential for bacterial virulence, Dam in-
hibitors are likely to have broad antimicrobial
action, hence Dam is a promising target for
antimicrobial drug development.
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Sources of Mathematical
Thinking: Behavioral and
Brain-Imaging Evidence

S. Dehaene,1* E. Spelke,2 P. Pinel,1 R. Stanescu,1 S. Tsivkin2

Does the human capacity for mathematical intuition depend on linguistic
competence or on visuo-spatial representations? A series of behavioral and
brain-imaging experiments provides evidence for both sources. Exact arithmetic
is acquired in a language-specific format, transfers poorly to a different lan-
guage or to novel facts, and recruits networks involved in word-association
processes. In contrast, approximate arithmetic shows language independence,
relies on a sense of numerical magnitudes, and recruits bilateral areas of the
parietal lobes involved in visuo-spatial processing. Mathematical intuition may
emerge from the interplay of these brain systems.

Will it ever happen that mathematicians
will know enough about the physiology
of the brain, and neurophysiologists
enough of mathematical discovery, for
efficient cooperation to be possible?
[Jacques Hadamard (1)]

Until recently, the only source of information
about the mental representations used in
mathematics was the introspection of mathe-
maticians. Eloquent support for the view that
mathematics relies on visuo-spatial rather
than linguistic processes came from Albert
Einstein, who stated: “Words and language,
whether written or spoken, do not seem to
play any part in my thought processes. The
psychological entities that serve as building
blocks for my thought are certain signs or
images, more or less clear, that I can repro-
duce and recombine at will” (2). Many math-
ematicians report similar experiences (1, 3),
but some have stressed the crucial role played
by language and other formal symbol systems
in mathematics (4). Still others have main-
tained that the critical processes giving rise to
new mathematical insights are opaque to con-

sciousness and differ from explicit thought
processes (1, 3, 5).

We address the role of language and visuo-
spatial representation in mathematical thinking
using empirical methods in cognitive neuro-
science. Within the domain of elementary arith-
metic, current cognitive models postulate at
least two representational formats for number: a
language-based format is used to store tables of
exact arithmetic knowledge, and a language-
independent representation of number magni-
tude, akin to a mental “number line,” is used for
quantity manipulation and approximation (6,
7). In agreement with these models, we now
demonstrate that exact calculation is language-
dependent, whereas approximation relies on
nonverbal visuo-spatial cerebral networks.

We first used behavioral experiments in bi-
linguals to examine the role of language-based
representations in learning exact and approxi-
mate arithmetic. In one experiment, Russian-
English bilinguals were taught a set of exact or
approximate sums of two two-digit numbers in
one of their two languages (8). In the exact
addition condition, subjects selected the correct
sum from two numerically close numbers. In
the approximate addition condition, they were
asked to estimate the result and select the clos-
est number. After training, subjects’ response
times for solving trained problems and novel
problems were tested in their two languages.
Performance in both tasks improved consider-
ably with training (response times dropped, in
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approximation, from 4423 to 2368 ms, and in
exact calculation from 4285 to 2813 ms; both
P , 0.001), regardless of the language in which
a problem was trained (response times dropped
from 4364 to 2644 ms in Russian and from
4344 to 2534 ms in English). Performance on
exact and approximate tasks nevertheless
showed different patterns of generalization dur-
ing the test (Fig. 1). When tested on trained
exact addition problems, subjects performed
faster in the teaching language than in the un-
trained language, whether they were trained in
Russian or English. This provided evidence that
the arithmetic knowledge acquired during train-
ing with exact problems was stored in a lan-
guage-specific format and showed a language-
switching cost due to the required internal
translation of the arithmetic problem. For ap-
proximate addition, in contrast, performance
was equivalent in the two languages, providing
evidence that the knowledge acquired by expo-
sure to approximate problems was stored in a
language-independent form.

Further evidence for contrasting represen-
tations underlying exact and approximate
arithmetic came from comparisons of perfor-
mance on trained problems and on novel
problems involving similar magnitudes (Fig.
1). For exact addition, subjects performed
faster on trained problems, suggesting that
each new fact was stored independently of
neighboring magnitudes, perhaps as a se-
quence of words. For approximate addition,
performance generalized without cost to nov-
el problems in the same range of magnitudes,
providing evidence that new knowledge was
stored using a number magnitude format (9).

A second experiment extended this phe-
nomenon to more complex arithmetic tasks. A
new group of bilinguals was taught two new
sets of exact addition facts (two-digit addition
with addend 54 or 63), two new exact opera-
tions (base 6 and base 8 addition), and two new
sets of approximate facts (about cube roots and
logarithms in base 2), with one task of each
type trained in each of their languages (10).
Over training, performance again showed large
and comparable improvements for all tasks and
for both languages. The exact tasks again ex-
hibited large costs for language-switching and
for generalization to novel problems for both
languages of training, indicating language-spe-
cific learning, whereas the approximate tasks
showed language- and item-independence (Fig.
1). These results suggest that the teaching of
some advanced mathematical facts such as log-
arithms and cube roots can give rise to a lan-
guage-independent conceptualization of their
magnitude. Exact arithmetic, however, consis-
tently relies on language-based representations
(11).

To examine whether partly distinct cere-
bral circuits underlie the observed behavioral
dissociation, two functional brain imaging
techniques were used, one with high spatial

resolution and one with high temporal resolu-
tion. Functional magnetic resonance images
(fMRI) and event-related potentials (ERPs)
were acquired while subjects performed tightly
matched exact and approximate addition tasks
(Fig. 2) (12).

In fMRI, the bilateral parietal lobes
showed greater activation for approximation
than for exact calculation. The active areas
occupied the banks of the left and right in-
traparietal sulci, extending anteriorily to the
depth of the postcentral sulcus and laterally
into the inferior parietal lobule (Talaraich
coordinates of main peaks: 44, –36, 52, Z 5
6.37; 20, –60, 60, Z 5 6.03; –56, –44, 52,
Z 5 5.96; –32, –68, 56, Z 5 5.10) (Fig. 3).
Activation was also found during approxima-
tion in the right precuneus (4, –60, 52, Z 5
4.99), left and right precentral sulci (–56, 12,
24, Z 5 5.81; 48, 16, 20, Z 5 4.80), left
dorsolateral prefrontal cortex (–44, 64, 12,
Z 5 4.46), left superior prefrontal gyrus (–32,

8, 64, Z 5 4.75), left cerebellum (–48, –48,
–28; Z 5 4.74) and left and right thalami (12,
–16, 16; Z 5 4.43; –20, –8, 16, Z 5 4.04).

Most of these areas fall outside of traditional
perisylvian language areas (13), and are in-
volved instead in various visuo-spatial and an-
alogical mental transformations (14–16). Cor-
tices in the vicinity of the intraparietal sulcus, in
particular, are active during visually guided
hand and eye movements (15), mental rotation
(16), and attention orienting (17). Previous
brain-imaging experiments also reported strong
inferior parietal activation during calculation
(18), although its functional significance could
not be ascertained because of task-difficulty
confounds. Here, the parietal activation cannot
be attributed to eye movement, hand move-
ment, and attentional or task difficulty artifacts
because the approximate and exact tasks were
matched in difficulty and in stimulus and re-
sponse characteristics (19). Rather, it is com-
patible with the hypothesis that approximate

Fig. 1. Generalization of learning new exact or
approximate number facts. Mean response
times (RTs) to trained problems in the trained
language are subtracted from RTs to trained
problems in the untrained language (language
cost: black bars) and from untrained problems
in the trained language (generalization cost:
gray bars). In experiment 1 (top two tasks), an
analysis of variance on testing RTs indicated
significant language-switching [F(1,3) 5 10.53,
P , 0.05] and generalization costs [F(1,3) 5
37.64, P , 0.01] for the exact task, but no
significant effect for the approximate task
(both Fs , 1). The interactions of task (exact or
approximate) on each cost measure were also
significant [respectively, F(1,6) 5 11.10, P ,
0.02 and F(1,6) 5 24.71, P , 0.005]. These
effects were observed both with testing in En-
glish and with testing in Russian, and perfor-
mance was similar in the two languages (for
trained problems, mean RTs were 3445 ms in
Russian and 3272 ms in English). In experiment
2 (bottom three tasks), similar analyses of vari-
ance indicated language-switching and gener-
alization costs for base 10 addition, F(1,7) 5 24.23, P , 0.005 and F(1,7) 5 28.61, P , 0.001, and
for addition in base 6 or 8, F(1,7) 5 304.06, P , 0.001 and F(1,7) 5 71.10, P , 0.001, but not for
logarithm or cube root approximation (both Fs , 1). The interactions of task (exact or approxi-
mate) with each cost measure were also significant [respectively, F(2,14) 5 13.06, P , 0.001 and
F(2,14) 5 17.31, P , 0.001]. Again, these effects were observed both with Russian and with English
testing, and performance was similar in the two languages (for trained problems, mean RTs were
2639 ms in Russian and 2621 ms in English). Error rates were low in both experiments and were
not indicative of speed-accuracy trade-offs.

Fig. 2. Design of the tasks
used during brain imag-
ing. Subjects fixated con-
tinuously on a small cen-
tral square. On each trial,
an addition problem, then
two candidate answers
were flashed. Subjects se-
lected either the correct
answer (exact task) or the
most plausible answer (ap-
proximate task) by de-
pressing the corresponding
hand-held button as quickly as possible. The same addition problems were used in both tasks (12).
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calculation involves a representation of numer-
ical quantities analogous to a spatial number
line, which relies on visuo-spatial circuits of the
dorsal parietal pathway.

The converse fMRI contrast of exact calcu-
lation relative to approximation revealed a large
and strictly left-lateralized activation in the left
inferior frontal lobe (–32, 64, 4, Z 5 7.53) (20).
Smaller activation was also found in the left
cingulate gyrus (–8, 60, 16, Z 5 6.14), left
precuneus (–8, –56, 20, Z 5 5.64), right
parieto-occipital sulcus (20, –80, 28, Z 5
5.27), left and right angular gyri (40, –76, 20,
Z 5 5.07; –44, –72, 36, Z 5 4.99), and right
middle temporal gyrus (48, –16, 8, Z 5 4.68).
Previous studies have found left inferior fron-
tal activation during verbal association tasks,
including generating a verb associated with a
given noun (21). Together with the left angu-
lar gyrus and left anterior cingulate, these
areas may constitute a network involved in

the language-dependent coding of exact ad-
dition facts as verbal associations (6).

Because of their low temporal resolution,
fMRI data are compatible with an alternative
interpretation that does not appeal to disso-
ciable representations underlying exact and
approximate calculation. According to this
alternative model, in both the exact and ap-
proximate tasks, subjects would compute the
exact result using the same underlying repre-
sentation of numbers. Differences in activa-
tion would be entirely due to a subsequent
decision stage, during which subjects would
select either an exact match or a proximity
match to the addition result. The higher tem-
poral resolution afforded by ERPs, however,
shows that this alternative interpretation is
not tenable. Crucially, ERP to exact and ap-
proximate trial blocks already differed signif-
icantly during the first 400 ms of a trial, when
subjects were viewing strictly identical addi-

tion problems and had not yet received the
choice stimuli (Fig. 3B). At 216 ms after the
onset of the addition problem, ERPs first
became more negative for exact rather than
for approximate calculation over left inferior
frontal electrodes, with a topography compat-
ible with the fMRI activation seen in this
same area. Previous ERP and intracranial
recordings during the verb generation task
also reported a latency of about 220 to 240
ms for the left inferior frontal activation (22).
Later on in the epoch, starting at 272 ms after
addition onset, ERPs became more negative
for approximation over bilateral parietal elec-
trodes, with a topography compatible with
the bilateral parietal activation seen in fMRI.
Thus, the recordings suggest that the two
main components of the calculation cir-
cuits—the left inferior frontal activation for
exact calculation and the bilateral intrapari-
etal activation for approximation—are al-

Fig. 3. Dissociation between exact and approximate calculation. (A)
brain areas showing a significant difference between the exact (blue)
and approximate (yellow) addition tasks in fMRI (P , 0.001; corrected
P , 0.05). The greatest difference in favor of approximation was
found in the bilateral inferior parietal lobule; activation was also seen
in cerebellum and precentral and dorsolateral prefrontal cortex. Con-
versely, the greatest difference in favor of exact calculation was found
in the left inferior prefrontal cortex, with a smaller focus in the left
angular gyrus. (B) ERP recordings of the same task. Significant differ-
ences between exact and approximate calculation were found in two
distinct time windows (red rectangles, P , 0.05), for which polar
maps and dipole models of the corresponding interpolated voltage
differences are shown. By 216 to 248 ms after the onset of the

addition problem, ERPs were more negative during exact calculation over left
inferior frontal sites (left). By 256 to 280 ms, ERPs were more negative
during approximate calculation over bilateral parietal sites (right).
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ready active at about 230 and 280 ms post-
stimulus. This demonstrates that the calcula-
tion itself, not just the decision, is performed
using distinct circuits depending on whether
an exact or an approximate result is required.

This conclusion is also strengthened by pre-
vious neuropsychological observations of pa-
tients with calculation deficits, in whom the
lesion localization fits with the present fMRI
results. Several lesion sites can cause acalculia
(23). However, on closer examination, at least
two distinct patterns of deficit are found (24).
Some patients with left parietal lesions exhibit a
loss of the sense of numerical quantity (includ-
ing an inability to decide which number falls
between 2 and 4 or whether 9 is closer to 10 or
to 5), with a relative preservation of rote lan-
guage-based arithmetic such as multiplication
tables (24, 25). Conversely, aphasia following
left-hemispheric brain damage can be associat-
ed with a selective impairment of rote arith-
metic and a preserved sense of quantity, includ-
ing proximity and larger-smaller relations be-
tween numbers (24). Particularly relevant to the
present work is the case of a severely aphasic
and alexic patient with a large left-hemispheric
lesion who could not decide whether 2 1 2 was
3 or 4, indicating a deficit for exact addition, but
consistently preferred 3 over 9, indicating pre-
served approximation (26). Thus, lesion data
confirm that distinct circuits underlie the sense
of quantity and knowledge of rote arithmetic
facts.

In conclusion, our results provides grounds
for reconciling the divergent introspection of
mathematicians by showing that even within
the small domain of elementary arithmetic,
multiple mental representations are used for
different tasks. Exact arithmetic puts emphasis
on language-specific representations and relies
on a left inferior frontal circuit also used for
generating associations between words. Sym-
bolic arithmetic is a cultural invention specific
to humans, and its development depended on
the progressive improvement of number nota-
tion systems (27). Many other domains of
mathematics, such as the calculus, also may
depend critically on the invention of an appro-
priate mathematical language (28).

Approximate arithmetic, in contrast, shows
no dependence on language and relies pri-
marily on a quantity representation imple-
mented in visuo-spatial networks of the left
and right parietal lobes. An interesting, though
clearly speculative, possibility, is that this
language-independent representation of nu-
merical quantity is related to the preverbal
numerical abilities that have been indepen-
dently established in various animals species
(29) and in human infants (30). Together,
these results may indicate that the nonverbal
representation that underlies the human sense
of numerical quantities has a long evolution-
ary history, a distinct developmental trajecto-
ry, and a dedicated cerebral substrate (31). In

educated humans, it could provide the foun-
dation for an integration with language-based
representations of numbers. Much of advanced
mathematics may build on this integration.
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Discovery of a Small Molecule
Insulin Mimetic with

Antidiabetic Activity in Mice
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Insulin elicits a spectrum of biological responses by binding to its cell surface
receptor. In a screen for small molecules that activate the human insulin
receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was
identified that acted as an insulin mimetic in several biochemical and cellular
assays. The compound was selective for insulin receptor versus insulin-like
growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral ad-
ministration of L-783,281 to two mouse models of diabetes resulted in sig-
nificant lowering in blood glucose levels. These results demonstrate the fea-
sibility of discovering novel insulin receptor activators that may lead to new
therapies for diabetes.

The actions of insulin are initiated by its
binding to the insulin receptor (IR), a disul-
fide-bonded heterotetrameric membrane pro-
tein (1–3). Insulin binds to two asymmetric
sites on the extracellular a subunits and caus-

es conformational changes that lead to auto-
phosphorylation of the membrane-spanning b
subunits and activation of the receptor’s in-
trinsic tyrosine kinase (4, 5). Insulin receptors
transphosphorylate several immediate sub-
strates (on Tyr residues) including insulin
receptor substrate (IRS) proteins (6). These
events lead to the activation of downstream
signaling molecules. The function of the re-
ceptor tyrosine kinase is essential for the
biological effects of insulin (1–6).

The pathogenesis of type 2, non–insulin-
dependent diabetes mellitus (NIDDM) is
complex, involving progressive development
of insulin resistance and a defect in insulin
secretion, which leads to overt hyperglyce-
mia. The molecular basis for insulin resis-
tance in NIDDM remains poorly understood.
However, several studies have shown modest
('30 to 40%) decreases in IR number with
tissues or cells from NIDDM patients (7).
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