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Abstract

To master the natural number system, children must understand both the concepts that number words capture and the counting
procedure by which they are applied. These two types of knowledge develop in childhood, but their connection is poorly
understood. Here we explore the relationship between the mastery of counting and the mastery of exact numerical equality (one
central aspect of natural number) in the Tsimane’, a farming-foraging group whose children master counting at a delayed age
and with higher variability than do children in industrialized societies. By taking advantage of this variation, we can better
understand how counting and exact equality relate to each other, while controlling for age and education. We find that the
Tsimane’ come to understand exact equality at later and variable ages. This understanding correlates with their mastery of
number words and counting, controlling for age and education. However, some children who have mastered counting lack an
understanding of exact equality, and some children who have not mastered counting have achieved this understanding. These
results suggest that understanding of counting and of natural number concepts are at least partially distinct achievements, and
that both draw on inputs and resources whose distribution and availability differ across cultures.

Research highlights

• We explore the relation between children’s acquisi-
tion of counting and their non-verbal understanding
of exact number.

• Because, in the US, these two acquisitions develop
over a limited timespan, we tested a population where
children master counting at a delayed age and with
greater variability: the Tsimane’ from the Bolivian
Amazon.

• We find that mastery of counting and the ability to
understand the logic of exact numerical equality
emerge together, controlling for age and education.
However, these two acquisitions do not emerge in a
specific order.

• These results suggest that counting and understand-
ing the natural number system are at least partially
distinct achievements, and that both draw on inputs

and resources whose distribution and availability
differ across cultures.

Introduction

Children’s acquisition of natural numbers (the numbers
we use to count) is a remarkable conceptual achievement
(Carey, 2009). When learning to count, children progress
through several systematic stages of knowledge (Lee &
Sarnecka, 2010, 2011; Sarnecka & Lee, 2009; Wynn,
1990, 1992). By approximately age 2, children in indus-
trialized societies learn to recite the first 10 or more
number words in order (Fuson, 1988), but they do not
understand their meaning, and therefore fail to produce
the appropriate number of objects in response to verbal
queries (Wynn, 1990, 1992; Carey, 2009). Over the
following year, children sequentially learn to produce the
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correct number of objects in response to ‘one’, ‘two’,
‘three’, and sometimes ‘four’. Throughout these stages,
children, called subset-knowers, have limited under-
standing of the meaning of the other words in their
count list. Subset-knowers understand that only one
number word can apply to a set at any given time; that
this number word continues to apply to the set as long as
the set is intact; and that a new number word should be
used when the set’s size changes (Brooks, Audet &
Barner, 2013; Condry & Spelke, 2008; Sarnecka &
Gelman, 2004). Nevertheless, subset-knowers fail to
understand that sets of the same size must be associated
with the same number word (Condry & Spelke, 2008;
Sarnecka & Gelman, 2004).
After learning the meaning of the first three or four

number words, children’s behavior undergoes a striking
change (Carey, 2009; Piantadosi, Tenenbaum & Good-
man 2012): they produce the appropriate exact quantity
in response to any word in their count list, becoming
full counters.1 In the immediate time after they become
full counters, children continue to have a fragile
understanding of number words. For example, they
do not understand that consecutive number words
always refer to consecutive cardinal values (Davidson,
Eng & Barner, 2012). Nevertheless, full counters’
understanding of number words quickly develops, and
children master the logic of all number words, even
those they cannot count up to (i.e. even if a full counter
cannot count up to 80, they still understand that 80
refers to an exact cardinal value) (Lipton & Spelke,
2006).
Broadly, two types of accounts of the developmental

relationship between counting and exact number have
been proposed.2 The first type of account proposes that
humans understand the logic of exact number before they
begin to learn the meaning of number words and counting
(Gallistel & Gelman, 1992). That is, subset-knowers
understand that collections of objects have an exact

numerical size, and they understand how different manip-
ulations affect that value (e.g. adding one item increases
the set’s exact size by one, and then removing one item
restores the set’s original exact size). This understanding
may be available at birth, or mature before children begin
to learn the meaning of number words. Under this
account, children only learn that each exact number has
a name (e.g. ‘one’, ‘twenty-four’) and that these names are
ordered in the count list (i.e. ‘five’ is the name of the exact
numerical size that is exactly one element bigger than the
exact numerical size named by ‘four’). If this account is
correct, then children’s failure to use number words
correctly does not reflect a limit to their numerical
concepts; instead, it implies that they have not learned
that number words are names for exact numbers.
On this account, children’s understanding of number

resembles that of adults. We, as adults, know that a
bucket of sand consists of an exact number of grains.
Furthermore, we understand that adding or removing
a single grain of sand changes this number (even
though the bucket looks the same), whereas substitut-
ing one grain for another does not. This knowledge,
however, does not depend on knowledge of the exact
number of grains in the bucket, on possession of any
means to enumerate the grains, or on knowledge of the
specific word that refers to this cardinal value. Young
children may share this ability to represent and track
changes to a set’s exact numerical size, but nevertheless
struggle to understand how counting procedures work
and what information they provide. We call these types
of proposals ‘[exact numerical] concepts before count-
ing’.
The second type of account proposes that humans do

not understand the meaning and logic of exact number
until they learn to enumerate sets by counting. That is,
young children have a poor understanding of what a set’s
exact numerical size is or how it changes under different
transformations. By learning the meanings of the first
number words and the workings of the counting proce-
dure of their culture, children come to master the logic of
exact number. In particular, Carey (2009) proposed that
children undergo a sharp conceptual change when they
decipher the meaning of their counting procedure. We
call these types of proposals ‘[exact numerical] concepts
through counting’.
Although there is a large literature investigating

children’s understanding of number words (e.g. Sarnecka
& Gelman, 2004; Sarnecka & Wright, 2013; Brooks
et al., 2013; Condry & Spelke, 2008), this literature does
not distinguish the above accounts. Because the tasks in
these papers all involve the use of number words,
children may fail these tasks either because they do not
understand the logic of exact number, or because they do

1 Full counters are usually called Cardinal Principle knowers
(CP-knowers). However, this term assumes that they understand the
logic of the natural numbers: an assumption that the present research
aims to test. Therefore, we use this more neutral terminology.
2 The accounts we focus on here should not be confused with those of
an earlier debate over the relation between the principles underlying
counting and the skills needed to count effectively (Gelman & Gallistel,
1978; Briars & Siegler, 1984). With most current investigators (e.g.
Leslie, Gelman & Gallistel, 2008; Carey, 2009), we assume that the
cardinal principle underlying counting – the understanding that the last
tag in a counting routine indicates a property of the entire set – namely
its exact size – is acquired, and we focus on the open question of what
children learn when they acquire this principle: do they only come to
understand how counting works, or do they also develop an
understanding of exact numerical magnitudes?
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not know that number words refer to exact numerical
values. Thus, children’s understanding of the logic of
exact number needs to be assessed without relying on
number words.

A long history of research, beginning with Piaget
(1968), has probed children’s understanding of number,
using tasks that do not require mastery of numerical
language and counting. Piaget’s work on number con-
cepts sprang from a general theory of the development of
quantitative concepts, whereby young children (in the
preoperational stage; ages 2–7) have an undifferentiated
representation of quantity that fuses number with other
perceptible features of a set, such as the length of the
array formed by its elements. His tasks focused on
children’s understanding that number remains constant
when other dimensions of quantity (such as length) are
transformed (see Hyde, 1970, chapter 4 for a succinct
review of Piaget’s views). Subsequent research revealed,
however, that Piaget’s theory was incorrect (Gelman,
1972; Gelman & Gallistel, 1978; Mehler & Bever 1967;
Rose & Blank, 1974), and experiments now provide
evidence that even human infants represent number
independent of other quantities or perceptual features of
arrays (e.g. Libertus, Starr & Brannon, 2014), although
infants are nonetheless sensitive to other quantities (e.g.
Lourenco & Longo 2010) and to relationships between
number and length (de Hevia, Izard, Coubart, Spelke &
Streri, 2014). These findings do not reveal, however,
whether young children’s numerical concepts have the
full power of the natural number system: they are
consistent with both the ‘concepts before counting’ and
the ‘concepts through counting’ views.

The first critical experiments that bear on this ques-
tion, to our knowledge, were conducted by Izard, Streri
and Spelke (2014). Izard et al. presented 2-year-old
subset-knowers with a set of five or six featurally
indistinguishable finger puppets (e.g. frogs), each paired
with a branch of a six-branch tree (a reference set), and
then moved all the frogs into an opaque box. Then the
experimenter shook the puppets in the box, surrepti-
tiously removed one puppet from the original set of six
(so that the box in both conditions now contained only
five puppets), and encouraged children to put all the
frogs back on the tree. After the children placed the five
frogs back in their branches, they continued to search the
box for a longer time if the original set consisted of six
frogs. Children failed to show this pattern in a replication
of the experiment using a tree with 11 branches,
providing evidence that their successful discrimination
of five from six puppets depended on the one-to-one
correspondence of puppets to branches.

Subsequent studies therefore used the finger puppet
task to probe children’s understanding of exact

numerical equality. Children failed to distinguish five
from six puppets if they saw that one puppet was added
to or removed from the box while all the puppets were
hidden inside it. Critically, the same children who failed
to understand these transformations with a set of five or
six puppets succeeded when the set only contained two or
three puppets, suggesting that children’s failures on these
transformations did not stem from any difficulty in
perceiving, remembering, or understanding the transfor-
mations that resulted in the addition or subtraction of
one object. If they did, the set’s size should not have
influenced their performance. Nevertheless, these trans-
formations did not affect children’s representations of
the number of puppets inside the box.

Izard also tested children’s reactions to two events
involving both the addition and the subtraction of a
single puppet. In one event, five or six puppets entered
the box and then one of the puppets was removed from
the box and returned to it: a transformation that
preserved the identities of the individual puppets. In
the other event, one puppet was removed from the box
and a different, featurally indistinguishable puppet
replaced it: a transformation that substituted one puppet
for another. Although the same numerical transforma-
tions were presented in these two events, children
responded to them differently. Children searched appro-
priately after the identity event but not after the
substitution event, even though all the objects involved
in these events were visually indistinguishable and the
events themselves were highly similar in timing and
appearance.

The contrast between children’s understanding of the
identity and substitution events is striking because they
involve the same numerical transformations of addition
and subtraction. If you have six cookies on a plate and
take one away, and then replace it with an identical
cookie, it makes no difference to the resulting exact
numerical size which of the cookies you took, and which
cookie you replaced it with: the resulting size will always
be six. For the children in Izard’s studies, however, the
identities of the individual objects that were removed and
added to the initial set mattered. Izard et al.’s findings
provide evidence that young children can use the one-to-
one correspondence to reproduce an exact set of objects,
but that they do not represent that set’s exact numerical
size: a value that is transformed in a lawful way by
addition or subtraction of one individual, regardless of
the identity of that individual. Although young children
understand that number is conserved over non-numerical
transformations, contrary to Piaget’s theory and find-
ings, they evidently do not understand that number is
restored after the paired numerical transformations of
adding and subtracting one. The subset-knowers in these
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experiments failed to understand the logic of exact
numerical equality.
Izard et al.’s results directly challenge Gallistel and

Gelman’s (1992) version of the ‘concepts before count-
ing’ account. If 2-year-old subset-knowers do not
represent a set’s exact numerical size, then mastery of
the logic of natural numbers cannot be reduced to
learning the names for exact numbers and how to
calculate them. These findings are nevertheless consistent
with weaker versions of the ‘concepts before counting’
account. Children’s understanding of the logic of exact
number may still be necessary for children to master
numbers and counting and simply develop sometime
after the second year of life. The findings also are
consistent with the ‘concepts through counting’ account:
children may come to master the logic of exact number
by mastering the logic of counting. More generally, the
findings raise two questions. First, given that 2-year-old
subset-knowers do not appreciate the logic of exact
numerical equality, when does this understanding
emerge? Second, what is the relation between children’s
understanding of exact equality, their learning of numer-
ical language, and their mastery of a culture-specific
counting procedure? In particular, is understanding the
logic of exact equality a prerequisite for counting, a
consequence of learning to count, or neither?
These questions are difficult to answer in industrial-

ized populations, because children’s numerical concepts,
language mastery, and counting skill develop in parallel,
over a short age span. However, the Tsimane’, a native
Amazonian group of farmer-foragers living in the
lowlands of Bolivia (Huanca, 2008), learn to count at
later ages and with a more variable timeline. While most
children in industrialized societies master counting by
age 4,3 it takes Tsimane’ children 2–3 times as long to
learn to count4 (Piantadosi, Jara-Ettinger & Gibson,
2014). This large variability thus enables us to evaluate
the relationship between counting and exact equality
while controlling for age and years of education.
To answer these questions, we assessed Tsimane’

children’s understanding of number words and counting

(using Wynn’s Give-N task), and their understanding of
the logic of exact equality (using a simplified version of
Izard’s puppets task), over a wide age span. If children’s
mastery of the logic of exact equality is related to their
knowledge of number words and counting, then chil-
dren’s performance on these two tasks should be
correlated, controlling for age and education. Second,
if children’s mastery of the logic of exact equality is
strictly tied to their understanding of counting, then
there should be little evidence of subset-knowers who
understand the logic of exact equality or of full counters
who do not.

Experiment

Methods

We tested children both on a standard verbal task
assessing children’s understanding of the number words
used in verbal counting (the Give-N task) and on a non-
verbal set transformation task assessing children’s
understanding of exact equality (hereafter, the exact
equality task). We additionally collected each partici-
pant’s age and years of education through parental
reports.

Participants

The training phase of the experiment was designed using
pilot data from nine participants who were excluded
from analyses. For the experiment, 63 children (mean
age: 6.83 years; SD: 1.75 years; range: 4–11 years) were
recruited from six Tsimane’ communities near San Borja,
Bolivia, in collaboration with the Centro Boliviano de
Investigaci�on y de Desarrollo Socio Integral (CBIDSI),
which provided interpreters, logistical coordination, and
expertise in Tsimane’ culture. All analyses were per-
formed after data collection was completed.

Procedure

First we determined each child’s ability to count through
a staircased version of the Give-N task (Wynn, 1992). In
this task, children were asked to move N (out of 10) chips
from one sheet of paper to another, where N varied
between 1 and 8. All chips were returned to the first sheet
of paper after each trial. We began the task by asking the
child to move 4 chips from one sheet to the other. If the
child did not respond to the first request (either because of
shyness or because they were puzzled by the request) we
discarded this first trial and asked children tomove 3 chips
instead. The task followed a 1-up for correct / 1-down for

3 Data from these other countries come from a variety of studies
(Negen & Sarnecka, 2009, 2012; Sarncecka & Carey, 2008; Sarnecka,
Kamenskaya, Yamana, Ogura & Yudovina, 2007; Sarnecka & Lee,
2009; Slusser & Sarnecka, 2011); we thank Meghan Goldman and
Barbara Sarnecka for compiling and sharing these data.
4 This delay may be due to differences in the material circumstances,
cultural experience, and linguistic experience (all of which we collec-
tively refer to as input) of young Tsimane’ children, relative to children
in industrialized societies (Foster, Byron, Reyes-Garc�ıa, Huanca, Vadez
et al., 2005; Huanca, 2008; Gunderson & Levine, 2011; Levine,
Suriyakham, Rowe, Huttenlocher & Gunderson 2010).
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incorrect staircased procedure and ended when (1) the
child correctly moved 8 chips from one sheet to the other,
(2) the child’s counting stage could be obtained through
the standard classification rules after 8 queries (see
Piantadosi et al., 2014, for rules), or (3) the child wanted
to stop. Because visitors to the communities are rare, and
the Tsimane’ are less familiar with behavioral experi-
ments, it was often challenging to explain that we were
interested only in the participant’s behavior, regardless of
whether they responded correctly or not. As a result,
parents sometimes blurted out help (e.g. ‘pick up one
more!’). The experimenter noted the trials when partic-
ipants received help and ran additional trials, ignoring the
first two stopping rules. In some cases, a child’s knower-
level was not evident from their pattern of responses. In
these situations, the experimenter asked the child if they
would be willing to do a few additional trials. If the
participant agreed, the experimenter chose the queries
that would help the most in determining the child’s
number-knower level, based on their past responses. An
undergraduate volunteer (see Acknowledgments) and the
first author independently determined which number-
knower level best fit each child’s performance (75.00%
agreement; Cohen’s weighted inter-rater agreement
kappa = 0.92). A third coder (second author) served as
a tiebreaker for cases when the first two coders disagreed.
All coders were blind to all other participant information
(age, education, and performance on the non-verbal set
transformation task).

The exact equality task consisted of a non-verbal
assessment of children’s understanding of this aspect of
natural number. We began with a training phase to
familiarize the participants with the displays and ques-
tions. Two drawings of children (distinguishable only by
their shirt color) were placed on opposite sides of a small
table. The participants were told that we would distribute
paper pictures of cookies between the two children.5

After each distribution, participants were asked whether
the children had an equal quantity of cookies or different
quantities of cookies (the correct answer was ‘equal’ in
half of the trials). Participants completed four simple
trials in the training phase: One cookie for each child;
one cookie for one child and two cookies for the other;
one cookie for one child and eight cookies for the other;
and eight cookies for each child (see main task procedure
for explanation of how the eight cookies were dis-
tributed). Training phase trials were presented in a
random order except that the trial where eight cookies

were given to each child was always the final one. When a
participant responded incorrectly, we asked follow-up
questions that helped the participant understand the task
(e.g. ‘Does one child have more than the other?’, ‘Can
you point to which one has more?’). The interpreter then
explained the task again using the current trial’s cookie
distribution as an example.

Figure 1 shows the exact equality task’s procedure.
Part 1 was identical to the last training trial. The
experimenter announced that a set of (N = 16) cookies
would be divided evenly between the two children. The
cookies were distributed using one-to-one correspon-
dence (i.e. taking two cookies at a time and giving one to
each child) and were arranged into two 4 9 2 matrices.
In part 2, the participant was asked to confirm that the
two children had an equal quantity of cookies. If the
participant responded incorrectly we asked follow-up
questions similar to those in the training phase and
restarted the trial. Afterwards, the experimenter rear-
ranged the sets of cookies into piles such that the cookies
overlapped with each other, making them difficult to
individuate (and thus to perform one-to-one matching)
and minimizing geometric cues to quantity. In part 3, the
experimenter applied a simple transformation to one of
the cookie piles. The interpreter described the transfor-
mation while the experimenter performed it. However,
the transformation was performed so that it could be
followed and understood in the absence of the linguistic
description. In part 4, the experimenter asked the
participant ‘Do the children have an equal quantity of
cookies or different quantities of cookies?’ The inter-
preter then informed the experimenter if the child had
responded ‘equal’ or ‘different’. This procedure was
repeated six times applying the following transforma-
tions in a random order: (1) Stir the cookies, (2) give one
cookie (addition), (3) take one cookie (subtraction), (4)
replace one cookie by another cookie of the same
appearance (substitution), (5) take and return, or add
and remove, one cookie (identity; the operation order in
this transformation was randomized across children),
and (6) take half of the cookies. Thus, half of the
transformations disrupted exact equality and half did
not. If children understand exact equality, they should
understand which of these transformations do and do
not change the set’s size. Occasionally children got
distracted in the middle of a trial and looked away. When
this happened, the experimenter restarted the trial.
Because children can succeed in the stir and the take-
half transformations without understanding the logic of
exact equality, we will refer to these two transformations
as the control transformations, and to the rest as the
primary transformations (addition, subtraction, substi-
tution, and identity transformations).

5 The types of objects that were given to the pictured children were the
same within-trials but changed across trials for each child. The possible
objects were cookies, candies, and drawings of pencils. For simplicity,
we always refer to the objects as cookies.
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Results

The goal of this project was to answer two questions.
First, when do children master exact equality? Second, is
understanding exact equality a prerequisite for counting,
a consequence, or neither? We approached the first
question by calculating partial correlations. If perfor-
mance on the exact equality task correlates with perfor-
mance on the Give-N task, controlling for age and years
in school, then children likely learn to reason about exact
equality as they learn number words and counting.
Alternatively, if performance on the exact equality task
correlates with age or years in school, controlling for
performance on the Give-N task, then children likely
learn to reason about exact equality independent of their
knowledge of number words.6 We approached the second
question by searching for the existence of children in
each of the four categories defined by crossing two states
of knowledge of counting ({full counter, subset-knower}
by two states of knowledge of exact equality {under-
stands exact equality, does not understand exact equal-
ity}). Past work suggests that there are full counters who
understand exact equality (Lipton & Spelke, 2006), and
subset-knowers who do not understand exact equality
(Izard et al., 2014). Thus, our main focus is on searching
for the existence of full counters who do not understand

exact equality, and subset-knowers who do. Because we
expect children to fall in all four quadrants simply due to
noise in their performance, we use a stringent and
conservative rule to categorize children who understand
the logic of exact equality: perfect performance across
the four primary transformations. Conversely, when
searching for the existence of children who fail to
understand the logic of exact equality, we analyze their
errors in detail to test if they can be explained by
performance errors.
Figures 2 and 3 summarize our complete data set. In

Figure 2 each column is a single child and each row is a
single set transformation. Children are sorted by their
age in years (horizontal axis) and sub-sorted by number-
knower level in each year group. Filled in squares
indicate correct answers and empty squares indicate
incorrect answers; children’s number-knower level is
color-coded. Figure 3 shows the same data as a function
of children’s number-knower level, their performance on
the exact equality task (see below for details), and their
age. To ensure that children’s performance on the
equality task captured their understanding of exact
numerical equality, we first confirmed that children’s
patterns of responses did not conform to an approximate
interpretation of equal (see SI text for details).

When do children understand exact equality?

To measure how understanding exact equality relates to
children’s number word knowledge, we computed a
correlation between number-knower level (numerically

Part 1:
Division

Part 2:
Rearrangement

Part 3:
Transformation

Part 4:
Equal or Di erent?

Figure 1 General task procedure. Sixteen cutout cookie drawings were evenly distributed between two pictures of identical
children with different shirts (Part 1). After the participant confirmed that the both children had the same amount of cookies the
experimenter rearranged each set to remove shape cues (Part 2). Next, the experimenter performed a set transformation on one of the
child’s cookies (Part 3). Last, participants were asked if both children had an equal amount of cookies.

6 The structure of the partial correlations may be more complex.
However, in light of our results, discussing these alternatives is
unnecessary.
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coded 0–5, with 5 = full counter) and overall accuracy
on the exact equality task (defined as the number of
primary transformations the child reasoned about cor-
rectly).7 In a nonparametric Kendall correlation (John-
son & Wichern, 2002) children’s number-knower level
significantly correlated with their performance on the
exact equality task after controlling for both age and
education (Tau = 0.23; 95% CI: 0.06–0.40; p < .01 Ken-
dall tau rank partial correlation). This indicates that
children’s understanding of number words is linked to
their understanding of exact equality, independent of
their age or schooling. As such, this suggests that
children’s mastery of exact equality is linked with their
understanding of, or exposure to, number words. These
results, together with the findings from Izard et al.
(2014), challenge the ‘concepts before counting’ account,
as they show that children do not understand the logic of
exact equality before they learn number words, and that
this understanding does not emerge at a given age.
Instead, mastery of exact equality emerges together with
children’s understanding of number words.

These findings, however, do not imply that age or
schooling have no influence on the exact equality task.

Children’s performance on the exact equality task
marginally correlated with their age when controlling
for number word knowledge (but not schooling), and it
correlated with their schooling when controlling for
number word knowledge (but not age). This suggests
that age, schooling, or some other factor that correlates
with these two also influenced children’s performance on
our task (see SI text for details).

Is understanding the logic of exact equality a
prerequisite for counting, a consequence of counting, or
neither?

Given that understanding number words is related to
understanding exact equality, we next focused on the
order in which children master exact equality, on one
hand, and counting on the other. To do this, we searched
in our data for the existence of children in each of the
four possible states regarding counting knowledge (full
counters, subset-knowers) and exact equality under-
standing (understands exact equality, does not under-
stand exact equality). Different concerns arise when
searching for the existence of children in each quadrant.
If some full counters make errors in the exact equality
task, we want to ensure that they were not caused by
distraction. In contrast, if some subset-knowers succeed
in the exact equality task, we want to ensure that this
finding cannot be explained by chance alone. Conse-
quently, we analyzed each quadrant individually. As in
the previous analysis, we used the child’s aggregate
performance on the four primary set-transformations
(add one, take one, and the identity and substitution
transformations) as an overall measure of knowledge of
exact equality. Thus, perfect or ceiling performance
refers to children responding the four main set-transfor-
mations correctly.

Some, but not all, full counters understand exact
equality

As expected, our dataset contained children who could
both count and understand exact equality. In all, 14/
26 = 53.85% (95% CI: 33.37–73.41) of full counters

11106 7 8 954

Add
Subtract
Identity

Substitute
Take-half

Stir

Age

1-knower
2-knower
3-knower
4-knower
Full counter

0-knower

Figure 2 Children’s individual performance on each of the six transformations of exact equality task. Each column shows a child’s
performance on the task. Participants are sorted by age and color-coded by their number-knower stage. Each square represents
success in the row’s transformation.
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Figure 3 Results as a function of children’s number-knower
level (x-axis), their performance on the exact equality (y-axis),
and their age (color coded). Each point represents a child.

7 Including the stir and take-half transformations in any of our analyses
does not qualitatively change our findings.
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performed at ceiling (all four main set-transformations
correct) on the exact equality task. This proportion is
significantly higher than expected by chance given that
each participant responded to four transformations
(p < .0001 by binomial test).
Next, we tested whether there were any full counters

who did not understand the logic of exact equality.
Altogether, 12/26 = 46.15% of full counters made at least
one error on the exact equality task. However, all of these
participants were close to ceiling, making at most two
errors (9/26 = 34.62% only erred in one transformation,
and 3/26 = 11.54% erred on two transformations). It is
possible then that these children understand the logic of
exact equality and that their errors were simply due to
temporary external distractions. If this were true, then
their errors should be uniformly distributed across all six
transformations (all transformations were approximately
matched for length, and trials were restarted if the child
looked away at any point during the transformation; see
Methods). However, this was not the case. Instead, full
counters’ errors were concentrated in the substitution
transformation (7 children failing this transformation;
thus mimicking patterns found in industrialized societies;
see Discussion), followed by errors in the identity and the
addition transformations (4 and 3 errors, respectively),
and last in the take one transformation (1 error).
Although the stir and take-half transformations were
not included in this analysis, all of these participants also
succeeded in both of the control transformations. More-
over, a linear regression fit to subset-knowers’ error rate
using age and education as the dependent variables
predicted that full counterswho did not perform at ceiling
should have similar error rates to the observed ones (using
their age and years in school as the predictors; see SI text
for regression and prediction details). This suggests that
full counters’ errors were not substantially lower com-
pared to the error rate of subset-knowers (adjusting for
age and education). Altogether this suggests that full
counters’ errors were likely not due to the product of
temporary distraction or carelessness, but because exact
equality is a fragile notion even after learning how to
count: their errors were concentrated on the substitution
transformation (p < .05 by permutation test), mimicking
patterns found in the US, and their error rate was similar
to that of subset-knowers with similar age and schooling.
Our results therefore show that children can master the
counting algorithm without fully understanding exact
equality. However, in contrast to studies in industrialized
populations (e.g. Davidson et al., 2012), our task did not
use number words, thus showing that some full counters
not only fail to understand how to use number words, but
they also fail to understand the underlying concepts that
number words capture.

Some, but not all, subset-knowers understand exact
equality

Replicating findings from the US (Izard et al., 2014), our
dataset also contained subset-knowers who failed to
understand exact equality. In all, 31/37 = 83.78% (95%
CI: 67.99–93.81) of subset-knowers made at least one
error in the set transformation task (p < .0001 by
binomial test): 12.90% failed on one transformation,
48.39% failed on two transformations, and 38.71% failed
on three transformations.
Last, we asked if any subset-knowers understood exact

equality. Six out of the 37 subset-knowers (16.22%)
performed at ceiling on the four tested transformations,
compared to 6.25% expected by chance (p < .05).8 Given
that the number of subset-knowers performing at ceiling
on the exact equality task is significantly higher than
expected by chance, this finding suggests that our dataset
contains at least one child who cannot count but
nevertheless understands the logic of exact equality.9

Thus, to our knowledge, our experiment is the first to
provide evidence that understanding the logic of exact
equality can also precede knowledge of counting. Alto-
gether, our results suggest that there is no strict impli-
cational relationship between the development of the
logic of exact equality and mastery of counting.

Discussion

Here we explored how children’s understanding of exact
numerical equality relates to the mastery of counting.
Our findings show that children’s understanding of the

8 The strength of evidence for this finding would drop if any of the six
subset-knowers performing at ceiling were actually full counters who
were misclassified by our Give-N task and subsequent coding.
However, incorrect classification of a true full counter as a subset-
knower is unlikely with the present Give-N procedure, which began
with 4 (i.e. a quantity at the border between these categories) and
proceeded for eight staircased trials. Post-hoc inspection of children
who most plausibly might be misclassified suggested that there were no
children who might have been misclassified as subset-knowers. If any
classification was erroneous, it was only one participant classified as a
full counter who was at chance (3/8 correct) on trials of N = 5 and
above in the Give-N task, but was at ceiling in the set-transformation
task. Reclassifying that child as a subset-knower would strengthen the
evidence that there are some subset-knowers who understand exact
equality.
9 Importantly, however, our measure of whether a subset-knower
understands exact numerical equality is conservative because it requires
perfect performance on our tasks. It is therefore possible that our
dataset contains more subset-knowers who understand exact equality
but did not perform at ceiling due to performance errors. As such, using
a less stringent measure would only strengthen our conclusions.
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logic of exact equality – the understanding that collec-
tions of objects have an exact numerical size and the
understanding of how set manipulations affect that value
– emerges at around the same time that children master
counting, independent of both age and education. These
two abilities, however, do not emerge in a specific order.
Instead, children can be full counters without under-
standing exact equality, and they can be subset-knowers
who nevertheless understand exact equality. Importantly,
when searching for the existence of subset-knowers who
understand exact equality we used a stringent definition
(perfect performance on the main set transformations),
making our estimate of subset-knowers who understand
exact numerical equality conservative. Conversely, when
searching for the existence of full counters who do not
understand exact numerical equality we analyzed their
errors in detail to ensure that our conclusion is
warranted that such children are present in our sample.
Together, these analyses show that (1) non-verbal mas-
tery of the logic of exact number is variable across
cultures and does not emerge uniformly at a certain age;
and that (2) mastery of counting is neither necessary nor
sufficient for understanding the logic of exact number.

Our findings directly challenge both the ‘concepts
before counting’ accounts and Carey’s (2009) version of
the ‘concepts through counting’ account. Mastery of the
logic of exact numerical equality appears to develop
gradually, but is not tightly linked with children’s
acquisition of counting. Together, (1) the correlation
between understanding of exact equality and number-
word knowledge, (2) the delay the Tsimane’ show in both
these acquisitions, and (3) the absence of sharp changes
in children’s understanding of exact equality when they
master counting suggest that learning to count and
learning the underlying number system that counting
captures are at least partially distinct achievements, and
that both draw on inputs and resources whose distribu-
tion and availability differ across cultures.

Our findings are consistent with results testing
children from industrialized societies. In the US, young
children have a poor understanding of the meaning of
number words (Brooks et al., 2013; Davidson et al.,
2012; Condry et al., 2008). Although these studies
focused on tasks with number words, our results
suggest that children’s failures on these tasks may be
partially caused by a deeper lack of appreciation of
exact number. Furthermore, our findings replicate and
extend the findings of Izard et al. (2014). First, we
found that in a similar task, but with a different culture,
subset-knowers fail to represent a set’s exact numerical
size. Moreover, our replication matches Izard et al.’s at
a more intricate level: we also find that substitution
transformations are more challenging for children than

identity transformations. This finding suggests that
understanding that sets have exact numerical sizes,
and appreciating how these sizes are disrupted or
preserved through different transformations, develops
gradually. In particular, children first learn that adding
and then removing (or removing and then adding) a
single individual restores the original exact size of a set,
despite the fact that this event involves two numerical
operations. Then children learn that adding or remov-
ing even one element from a set always changes its
exact size. Finally, children learn that removing one
element and then adding a different element restores
the original exact size, despite the fact that this last
transformation (a substitution) involves the same com-
position of two numerical operations as the very first
transformation that they mastered (see SI text for a
quantitative analysis of this development using a mixed-
effects model).

Children’s differing performance on the substitution
and identity transformations has now been demon-
strated in two laboratories using different displays and
methods and conducted in different cultures. The iden-
tity and substitution transformations used in these
experiments were perceptually similar, and they made
similar demands on memory. Above all, these two
transformations were identical in their effects on num-
ber: the combined addition and subtraction of one
element from a set restores the original exact numerical
size of that set, regardless of which element or elements
participate in the transformation. Despite their numer-
ical equivalence and superficial similarity, however,
young children treat these two transformations differ-
ently until they have developed considerable experience
with numbers and number words. These findings provide
clear evidence that performance with these transforma-
tions reflects some conceptual development rather than
age-dependent task constraints. This convergence is
particularly striking because of the variability in the
timing of Tsimane’ children’s learning to count: vari-
ability that allowed us to disentangle age from other
factors.

Could our results be explained by performance errors,
rather than the genuine presence of children who have
come to understand counting but not the logic of exact
equality, or the reverse? In one sense, tracking two
distinct individuals (in the substitution transformation)
must place more performance demands on children than
does tracking a single individual (in the identity
transformation). However, this explanation raises a
key question: why are children in our task tracking
individuals at all, if they have and use numerical
concepts to reason about sets? When an older child is
told that five marbles are in one box and six marbles are
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in another box, the child does not need to see or track
any individual marbles in order to conclude that the
second box has more marbles (Davidson et al., 2012).
Similarly, if a single individual is added to or removed
from a set, the change in the set’s exact size does not
depend on which individual participated in that trans-
formation. If some children fail on the substitution
transformation because they have difficulty tracking the
individual members of that set, that failure implies that
they are not using a concept of exact number to reason
about this transformation. Moreover, the existence of
children who understand counting, as assessed by the
Give-N task, yet fail the test of exact equality, suggests
that mastery of counting is not sufficient for the
mastery and productive use of this key numerical
concept.
Finally, it is important to note that our results do

not imply that children learn non-verbal number
concepts and counting independently, but only that
each of these achievements can be attained before the
other. Children may be able to reach a mature
conception of exact number and counting in different
ways. A child who masters counting before under-
standing exact number may be able to use the counting
algorithm to build an understanding of exact number
(e.g. by noticing that small sets of the same size
produce the same output on the counting algorithm,
and that adding one element to a set changes the
algorithm’s output by one spot on the count list).
Conversely, a child who masters exact number before
mastering counting may come to realize that number
words refer to exact numerical values and that the
counting algorithm computes these values.
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