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Abstract

The contrast Rips et al. draw between “bottom-up” and “top-down” approaches to understanding

the origin of the capacity for representing natural number is a false dichotomy. Its plausibility

depends upon the sketchiness of the authors’ own proposal. At least some of the proposals they

characterize as bottom-up are worked-out versions of the very top-down position they advocate.

Finally, they deny that the structures that these putative bottom-up proposals consider to be

sources of natural number are even precursors of concepts of natural number. This denial depends

upon an idiosyncratic, and mistaken, idea of what a precursor is.

Rips et al. criticize a “bottom-up” approach to the origin of the capacity for representing

natural number. According to the bottom-up view that they believe characterizes most

current work on the development of numerical cognition (including mine), representations

of natural number are supposedly derived, by empirical induction, from representations of

sets, objects, and the quantitative resources of Figure 1 of the target article (parallel

individuation of small sets, analog magnitude representations of number). While agreeing

that the representational systems sketched in Figure 1 exist, and underlie a variety of

behaviors of infants and young children, Rips et al. deny that these (or even the explicit

representational scheme they call “simple counting”) are precursors to representations of

natural number. Rips et al. propose an alternative “top-down” account, in which math

schemas that are the equivalent of Peano’s axioms are somehow directly acquired without

involving the representations of Figure 1 or of simple counting.

Rips et al. wildly misconstrue my proposal. Although I hold that the schemata of Figure 1

and of simple counting are precursors to representations of natural number, these do not

exhaust the innate machinery brought to bear in this achievement; my proposal does not

bottom out in these structures. My position is more of a worked-out version of Rips et al.’s

top-down approach than a bottom-up approach (and thus I agree with much they have to say

in their target article).

My proposal depends upon a particular form of bootstrapping process (Quinian

bootstrapping) that has been well studied in the literature on the history and philosophy of

science (Carey, in press; Nersessian 1992; Quine 1960). Carey (2004; in press) illustrates the

role of Quinian bootstrapping in the acquisition of simple counting, which results in a

representational schema that goes beyond the resources of Figure 1. Simple counting is the

first schema that represents even a finite subset of the natural numbers, and the

bootstrapping episode that creates this schema is only one of several that eventually result in

the capacity for representing natural number. A second bootstrapping episode described In

Carey(in press) underlies the integration of simple counting with the analog magnitude
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representations of Figure 1. These do not complete the story; however, they illustrate how it

works.

All episodes of Quinian bootstrapping require top-down creation of explicit placeholder

structures, the symbols of which get their meaning entirely from conceptual roles within

those structures. Besides the resources needed for the construction of the placeholder

structures, Quinian bootstrapping involves modeling processes through which these

structures are infused with mathematical meaning. For example, nothing in Figure 1

captures the child’s capacity to create ordered lists of symbols. The meaningless list, “one,

two, three, four…” is a placeholder structure, the meaning of which is exhausted by its

conceptual role as an ordered list. Other computational resources are drawn upon in the

process of creating meaning for this placeholder structure – various logical capacities,

recursion, a variety of processes that model the representations of Figure 1 in terms of the

placeholder structure, as well as induction.

As Rips et al. point out, their own proposal for the innate building blocks for number

representation includes knowledge that is “tacit.” Their proposal suffers, however, from the

lack of any hint of what they might mean by this. How are the innate math schemas they

presuppose represented? What are the symbols like (format, content), and what

computations do they enter into? What is tacit knowledge? The schemata instantiated in

Figure 1 provide answers to those questions. The actual symbols in parallel individuation

represent individuals, but the system as a whole tacitly embodies arithmetical knowledge in

the processes that pick out and manipulate sets, compute a one-to-one correspondence, and

compute numerical equality and inequality. The actual in analog magnitude representations

represent approximate cardinal values of sets of individuals, but, again, the system as a

whole tacitly embodies arithmetical knowledge in the processes that compute arithmetic

functions over these values, including sums and ratios. Ditto for simple counting; much of

the knowledge that ensures that simple counting constitutes a representation of a finite

subset of the natural numbers is tacit, captured in the counting principles characterized in

Gelman and Gallistel’s (1978) classic work.

Rips et al. claim that neither simple counting, nor the representational systems depicted in

Figure 1, are precursors to natural number, arguing that the concept of natural number

cannot be defined in terms of structures of Figure 1, nor be derived from them by empirical

induction. However, the mastery of simple counting is a necessary prerequisite for the

mastery of complex counting, which Rips et al. agree is likely to be a necessary part of

acquiring the math schema of natural number. The mastery of simple counting draws on the

resources of Figure 1 (plus others), and, in this sense, these structures are all part of the

precursors to natural number. The authors point out that on the mathematical ontology they

favor, the content of a mathematical symbol is given entirely by computational role (its

place in the system), and on this view, simple counting and the structures in Figure 1 play no

role in the mathematical concept of natural number (which is exhausted by the concept of a

unique first number, the concepts of successor and predecessor, and mathematical

induction). However, aspects of these latter component concepts are implicit in the

computations carried out over the schemata captured in Figure 1 and in simple counting, and
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provide constraints in the modeling processes through which the placeholder structures

created by top-down processes come to have meaning.

My proposal, like theirs, assumes that conceptual role is the main source of content for

mathematical concepts. My proposal concerns how new primitive symbols are coined and

how they come to have the appropriate conceptual role. Contrary to Rips et al., I believe that

the content of each symbol for a positive integer is determined both by conceptual role and

by the capacity to represent cardinalities of sets of actual individuals. This hypothesis makes

sense of one of the most striking facts about mathematical development: Mathematical

development, both historically and in ontogenesis, often occurs in the course of modeling

the world. It is no accident that Newton invented the calculus and Newtonian mechanics, or

that Maxwell invented the mathematics needed to field theories in the course of modeling

Faraday’s electromagnetic phenomena. In the end, the big mistake that Rips et al. make is

methodological: they miss the fact that modeling activities can give placeholder structures

meaning, even if in the end the structures involved in these modeling processes, such as the

schemata of Figure 1, are part of an acquisition ladder that is not essential to the conceptual

role constructed. This is what developmental precursors really are – representations that play

a role in the bootstrapping process.

Before Rips et al. have offered an viable alternative to the picture they criticize, they owe us

some idea of what the math schemas they advocate are like, at Marr’s algorithmic level of

description, and how they are acquired.
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Figure 1.
A model for infants’ quantitative abilities. Response rules in ovals indicate conditions under

which infants look longer in addition-subtraction or habituation tasks. They are not meant to

exhaust possible uses of these representations.
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