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NEUROSCIENCE:

Knowledge of Number:
Its Evolution and
Ontogeny

Susan Carey*

Mathematical concepts and systems of
notation are intertwined with human
cultural history. The discovery (or
invention) of 0, understanding of
negative, rational, and real numbers,
and development of the calculus took
place over thousands of years. But
what of those most fundamental of
mathematical objects, the positive
integers: 1, 2, 3, 4, 5, ...? Until recently,
the consensus was that the capacity to
represent the positive integers was also
the product of culture, dependent on
the uniquely human capacity for
language. A new study on the
represention of number in animals, on
page 746 of this issue (1), along with
studies of the representation of number by prelinguistic infants (2), are
undermining that consensus.

The consensus was based on two considerations. First, not all human
languages contain a list like "one, two, three..." Such a representational
system developed slowly, through several stages, as documented by
historical language studies (3). Second, even in highly numerate cultures,
such as ours, children require a two year apprenticeship to master their
language's integer list (4).

Nevertheless, it is now clear that animals on many branches of the
evolutionary tree have the capacity to represent number (5). To establish



that animals have this capacity, one must show first that they distinguish
between sets of individuals on the basis of true numerical differences
rather than, say, total volume of the indviduals or spatial density of the
scene. Second, one must show that these distinctions between sets carry
numerical meaning for the animal. Minimally, the animal should represent
that 1 is less than 2, and 2 is less than 3, and so on. It is not enough to
know that 1 is different from 2 and 2 is different from 3, and so on.

For those not already convinced that nonhuman animals genuinely
represent number, the new data presented by Brannon and Terrace
elegantly demonstrate both that rhesus monkeys distinguish between
sets of individuals on the basis of number and that they can represent all
the ordinal relations that exist among the numbers 1 to 9. Brannon and
Terrace build on Terrace's previous demonstrations of rhesus
representation of serial order. For example, presented with pictures of a
cup, a table, a car, and a flower on a TV touch screen, rhesus monkeys
can learn to touch them in any arbitrary order, irrespective of their
position on the screen. The initial experiment of the new work begins by
showing that rhesus monkeys can learn to order sets of stimuli that
consist of 1 element, 2 elements, 3 elements, and 4 elements (see
examples of each numerosity in figure). Plainly, each set of stimuli forms
an arbitrary list of four items, so how does this experiment go beyond
Terrace's previous demonstrations of rhesus learning to order arbitrary
lists? In the current report, the question was whether rhesus monkeys
would learn the rule, "touch 1, then 2, then 3, then 4," when each list has
objects of varying sizes, shapes, and colors, such that no other stimulus
dimension covaries with number. The results showed that, yes, they
would. Performance on new lists, each seen only once, was every bit as
good as on ones at the end of the training series, each seen 60 times.

How many? Examples of stimuli used to probe numerical representation
in rhesus monkeys (1).
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But which rule did the monkeys learn? "Touch 1, then 2, then 3, then 4"
or "touch the items in order of increasing numerosity"? To answer this,
Brannon and Terrace gave the monkeys new problems with sets of
stimuli having between 1 and 9 elements. They found that the monkeys
generalized the rule "touch the lower number of items before the higher



one" when presented with stimuli containing set sizes that they had not
been taught (for example, 5 versus 7). This demonstrates that the
monkeys were capable not just of the representation of numerical order,
but also of the abstraction of a numerical rule. More important, it shows
that the representations of number underlying success in the first study
are not restricted to the subitizing range (1 through 4, the range in which
humans can simply look at a set of objects and know how many there are
without explicitly counting).

Because it would be very surprising if the abilities that Brannon and
Terrace demonstrate for rhesus monkeys were entirely absent in
humans, these results challenge the consensus that the capacity to
represent numerals is a cultural construction. But to establish whether
these representations are the evolutionary source of the human number
capacity, we must ask whether they are its ontogenetic source. That is,
are these abilities available to infants before they acquire language, and
are they the foundation of the culturally constructed integer list
representations?

Although the literature on numerical representation by prelinguistic infants
contains nothing so impressive as the results of Brannon and Terrace, it
is clear that young infants (4.5 to 8 months of age) have some numerical
competence. For example, they discriminate between stimuli consisting of
1, 2, and 3 elements, and even expect that 1 item added to an array
consisting of 1 hidden item will yield an array of exactly 2 items (that is, 1
+ 1 = 2), as well as that 2 - 1 = 1, 2 + 1 = 3, and 3 - 1 = 2 (2). There is
as yet no proof, however, that infants discriminate among larger sets of
elements on the basis of number, nor have there been stringent controls
for possible nonnumerical bases of discrimination, such as total stimulus
area. And finally, there has been no convincing demonstration that infants
represent the ordinal relations among sets of 1, 2, and 3 elements.

How might nonhuman animals and prelinguistic infants represent
number? Two classes of models for nonlinguistic numerical
representational systems have received empirical support: object file
models and analog magnitude models. In the object file model, the infant
or monkey forms a representation with one symbol for each individual in
the set and compares representations by computing one-to-one
correspondences between sets. Such representations are limited to the
number of individuals that can be held in short-term memory at any one
time, which is 3 or 4. These representations contain no symbols that
function as numerals, and there is no counting process. In analog
magnitude models, number is represented by a continuous quantity, akin
to a number line. Representations are compared by the same sorts of
operations that compare lengths, durations, volumes, and other
representations of continuous quantities. The process by which the
analog magnitude is incremented for each item in the set is equivalent to
counting (6), but analog magnitude models differ in many ways from
integer list models (7).

Brannon and Terrace's data favor an analog magnitude model. Their
monkeys represent numbers that exceed the limits of the object file
model. Further, analog models correctly predict that number comparisons
become easier when the differences between the numbers are greater
(the distance effect). By contrast, for infants the evidence favors the



conclusion that the object file model underlies the prelinguistic numerical
representations in the events studied to date (7). There is also
considerable indirect evidence that the integer list symbolic
representation of number is built from object file representations, and not
from analog magnitude representations (4), even though human adults
certainly use the latter as well (5).

The upshot is that one evolutionary source of human number
representation--the analog magnitude representations that Brannon and
Terrace most probably are tapping in primates--is not the primary
ontogenetic source of human symbolic number list representations, either
in linguistic evolution or in individual development. Although this
conclusion is controversial, our challenge is clear. We must specify the
nature of nonlinguistic representations of number (there may be many)
and characterize the process by which explicit symbolic representations
are constructed in the history of each culture and again by each child.
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