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Like most cognitive scientists, I take concepts to be mental symbols. Mental symbols are not
all concepts, as there are also sensory representations, motor representations, and perceptual
representations. From the perspective of cognitive science, a theory of concepts must specify
their format, what computations they enter into, what determines their content, and how they
differ from other types of mental symbols. In a recent book (Carey, in press) I present case
studies of the acquisition of several important domains of conceptual representations,
arguing that the details of the acquisition process adjudicate among rival theories of
concepts within cognitive science. The case studies bear on the existence and nature of
innate concepts, and on the existence and nature of discontinuities in development. Human
conceptual development involves the construction of representational resources that go
beyond those from which they are built in theoretically interesting ways. As Fodor (1975,
1980) has forcefully argued, characterizing these discontinuities and explaining how they
are possible is a formidable challenge to cognitive science. Meeting this challenge informs
our theories of the human conceptual system.

Here I illustrate the lessons I draw from these case studies by touching on one of them:
accounting for the origin of concepts of natural number. Explaining the human capacity for
representing natural numbers has been a project in philosophy for centuries (e.g., Mill, 1874)
and in psychology since its emergence as a scientific discipline during the past century (e.g.,
Piaget, 1952). As natural number is the backbone of all of arithmetic, an understanding how
representations of natural number arise provides a good start on a theory of the human
capacity for mathematics.

Accounting for the origin of any conceptual requires specifying the innate building blocks
from which the representations are built, and specifying the learning mechanisms that
accomplish the feat. Two distinct research programs should be, but often are not,
distinguished. In one, the logical program, the building blocks are conceived of as logically
necessary prerequisites for the capacity in question. In the case of natural number
representations these might include the capacity for carrying out recursive computations, the
capacity to represent sets, and various logical capacities, such as those captured in second
order predicate calculus. Sometimes arguments within the logical program seek to specify
some necessary computational ability that other animals lack (e.g., see Hauser, Chomsky &
Fitch’s, 2002, proposal that non-humans lack the capacity for recursion) that might explain
why only humans have the target conceptual ability. A full account of the building blocks
for some representational capacity within the logical program must include all of the
necessary ones. A second research program, the ontogenetic program, conceives of the
building blocks as specific representational systems out of which the target representational
capacity is actually built in the course of ontogenesis or historical development. In the case
of number representations these would be the innate representations with numerical content
(if any).

These two projects are interrelated, but clearly distinct. The first (characterizing the logical
prerequisites for natural number) leads to analyses like those that attempt to derive the
Peano-Dedekind axioms from Zermelo-Fraenkel set theory or Frege’s proof that attempts to
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derive these axioms from second order logic and the principle that if two sets can be put in
1-1 correspondence they have the same cardinal value. Such analyses seek to uncover the
structure of the concept of natural number, and certainly involve representational capacities
drawn upon in mature mathematical thought, but nobody would suppose that in ontogenesis
or historical development people construct the concept of natural number by recapitulating
such proofs (see Feferman, this volume).

The ontogenetic project (characterizing the actual representational systems from which
natural number is built) requires empirical studies of infants, non-human animals, young
children, and historical records, discovering systems of symbols (both mental and public)
that are actually created and used in thought, specifying their format and the computations
they support. If such empirically attested representational systems do not have the power to
represent the target concept (in this case natural number), the project then becomes one of
characterizing successive representational systems that are constructed in the process of
arriving at the target, and characterizing the learning mechanisms involved in the
construction of each.

The ontogenetic project does not reduce to the logical one. There is no presumption that the
concept of natural number can be defined in terms of the earliest representations with
numerical content alone. On the other hand, the ontogenetic project depends upon the logical
one for a characterization of the target concept at issue (e.g., what I mean here by the
concept of natural number is characterized by the Peano-Dedekind axioms), as well as for a
characterization of the logical resources drawn upon in the construction process.

Many recent papers illustrate the failure to distinguish the two projects. To take just one
example at random: Leslie, Gelman & Gallistel (2008) argue that natural number is built
from an innate system of representations that provides symbols that approximate the
cardinal values of sets (analog magnitude representations, see below), plus an innate
representation with the content “one,” and an innate capacity to represent the successor
function. The first of these, analog magnitude number representations, is a well-studied and
well-characterized system of representation found throughout the animal kingdom, as well
as in human infants, children and adults. The second, an innate symbol for “one,” is a
posited innate representation for which these authors offer no evidence. The third is a logical
prerequisite for a concept of natural number; clearly we must have the capacity to
implement the successor function somehow if we are to represent natural number. There
may be representations with the content “one” early in development, and as well as systems
of representation that implement the successor function, but in the ontogenetic research
tradition, one must actually characterize them (format, computational role), and provide
evidence for their existence. Thus, one might (and probably would) agree that
representations of “one” and the successor function are logical prerequisites for
representations of natural number, and in the logical tradition one could explore how
representations of number could be built from such primitives (a fairly easy task, obviously).
But the ontogenetic program requires providing evidence for such putative developmental
primitives.

Here I report on the current state of the art in accounting for the acquisition of concepts of
natural number from the ontogenetic research tradition. I argue for four theses: 1) There are
three distinct systems of innate representations with numerical content. 2) None contains any
symbols for natural numbers. 3) The ontogenetically earliest representational systems that
includes symbols for even a subset of the natural numbers is the count list, when deployed in
a way that satisfies the “counting principles” described by Gelman and Gallistel (1978). 3)
The learning mechanisms that accomplish the construction of the numeral list representation
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of natural number include, but are not exhausted by, a form of bootstrapping described by
Quine (1960, 1969, 1974), among others, called here “Quinian bootstrapping.”

Natural Number—a Case Study
Leopold Kronecker famously remarked “The integers were created by God; all else is man-
made” (cited in Weyl, 1949, p 33). Although not what he meant, his remark can be taken to
express a view of the cognitive foundations of arithmetical thought. If we replace “God”
with “evolution,” the position would be that evolution provided us with an innate
representational system that expresses cardinal values of sets of individuals, an innate
representational system the expresses the concepts captured by the Peano-Dedekind axioms.
Obviously, evolution yielded capacity to construct (by adulthood) representations of natural
number—what is actual is possible. Rather, the nativist position is that there is innate
computational machinery that operates on representations of sets of individuals and outputs
mental symbols with the content of positive integers.

Many modern cognitive scientists, most notably Rochel Gelman and Randy Gallistel, have
argued for the continuity of integer representations throughout development (Gelman &
Gallistel, 1978; Gallistel & Gelman, 1992). Continuing to interpret Kronecker
psychologically, he would be saying that all the rest of mathematics, including the rest of the
number concepts (rational, negative, 0, real, imaginary, etc.), was culturally constructed by
human beings, requiring the construction of representational with more expressive power
than those that implement integer representations.

Kronecker’s speculation, so interpreted, is wrong. Evolution did not give man the integers. I
now turn to the innate representational systems with numerical content we can thank
evolution for.

Innate system 1: Analog magnitude representations of number
Human adults, human infants, and non-human animals deploy a system of analog magnitude
representations of number. Number is represented by a physical magnitude that is roughly
proportional to the number of individuals in the set whose cardinal value is at stake. Figure 1
depicts an external analog magnitude representational system in which lengths represent
number. A psychophysical signature of analog magnitude representations is that
discriminability accords with Weber’s Law. (What I mean by “signature” here is a
measurable feature of performance that provides good evidence for some hypothesized
underlying representational/computational system). Weber’s Law, which holds of
representations of many continuous variables (e.g., loudness, brightness, length, area, and so
on), is that the discriminability of any two magnitudes is a function of their ratio. In the case
of number representations, this means that under circumstances where one can discriminate
sets of 8 individuals from sets of 16 with a certain reliablility (e.g., 75% accuracy), one will
be able to discriminate any two sets that stand in a ratio of 1 to 2 with exactly the same
accuracy. Weaker consequences of Weber’s law can be appreciated by examining the
external analogs in Figure 1. It is easy to see that 1 and 2 should be more discriminable than
are 7 and 8 (what is called the magnitude effect). Here are 1 and 2: -- and ----, and here are 7
and 8: --------------- and -----------------. Similarly, it should be easier to discriminate 1 from
3 than 2 from 3 (what is called the distance effect). Here are 1 and 3: -- and ------, and here
are 2 and 3: ---- and ------. Obviously, both the magnitude and distance effects follow from
Weber’s law, and indeed, studies of numerical discrimination robustly reveal both
magnitude and distance effects (Dehaene, 1997; Gallistel, 1990).

Dehaene (1997) and Gallistel (1990) review the evidence for the long evolutionary history
of analog magnitude number representations. Animals as disparate as pigeons, rats, and non-
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human primates represent number, using the representational system described above. Space
precludes a full treatment of this gorgeous literature, so I will present only one series of
studies. Elizabeth Brannon and Herb Terrace demonstrated that rhesus macaques are
sensitive to number and represent sets differing in cardinal value as numerically ordered.
These researchers began with Terrace’s previous demonstrations that rhesus macaques can
learn to order arbitrary sets of simultaneously presented stimuli. Presented with an array of
four objects randomly distributed on a touch screen on each trial, e.g., a red circle, a brown
table, a black cat, and a blue flower, the monkeys can learn to touch the stimuli in a
specified order. Thus, the capacity to represent serial order is itself part of our evolutionary
endowment (Swartz, Chen & Terrace, 1991; Terrace, Son, & Brannon, 2003). Brannon and
Terrace established that rhesus’ number representations are intrinsically ordered (Brannon &
Terrace, 1998). Two monkeys, Rosencrantz and Macduff, were first taught to do the ordered
list task, with arbitrary lists such as: first circle, then table, then cat, then flower. Of course,
whenever they were shown four new stimuli, they could have no idea what order they were
supposed to touch them in, so there was an extended period of trial and error before they
learned the order. After Rosencrantz and Macduff became good at that trial and error
discovery process, Brannon and Terrace started giving them lists such as those in Figure 2.
As you can see, each list consisted of four pictures, containing respectively, sets with 1, 2, 3,
and 4 items. In each list, the order the monkeys were supposed to press was 1, 2, 3, 4.
Across all the lists, all continuous variables that might have been confounded with number
(e.g., total surface area) were controlled for. At the beginning, the monkeys treated each list
the same as any arbitrary list, requiring extensive trial and error to learn the order called for
on that list. But over the course of learning 35 such lists, Rosencrantz and Macduff got faster
and faster. This could be because they were becoming ever more efficient at the trial and
error strategies for learning whatever arbitrary list the experimenter had in mind, or it could
be because they had learned a numerical rule.

To decide between these two possibilities, Brannon and Terrace gave Rosencrantz and
Macduff 150 trials in which they saw new lists only once, thus preventing any trial and error
learning. They did as well as on these lists as on those at the end of the 35 training sets
series, where they had seen each list 60 times. They had learned a numerical rule. But which
one? “Press 1 object, then 2 objects, then 3 objects then 4 objects?” Or “press in order of
increasing numerical magnitude?” To find out, Brannon and Terrace then presented the
monkeys with novel trials involving sets of 4, 6, 7, 8, and 9 items. Now the task was simply
to order two stimuli: e.g., arrays of 2 vs. 4, 3 vs. 6, or 5 vs. 9. Some included arrays with set
sizes within the range of the trained lists, and some were entirely novel set sizes. Each pair
was shown only once. Again, both monkeys transferred the rule to the novel pairs of arrays
whose cardinal values were outside of the training set. Apparently, they had learned the rule,
“touch in order of increasing numerical magnitude.”

Analog magnitude representations of number underlie performance on this task. Clear
evidence for distance effects were observed—accuracy was a function of the numerical
distance between the stimuli (e.g., the monkeys’ ability to order 6 and 9 was more accurate
than their ability to order 7 and 8). Recent data from Brannon’s laboratory confirm these
generalizations. Monkeys were trained to touch two arrays in numerical order; all training
pairs were taken from sets of 1 to 9 elements and over all pairs other variables were
controlled as in the Brannon and Terrace studies. After training, sets of 10, 15, 20 and 30
were added. Again, monkeys continued to succeed at the task upon first encountering these
larger sets, and performance accorded with Weber’s law (Cantlon & Brannon, 2005).

These data support the existence of an evolutionarily ancient representational system in
which number is encoded by an analog magnitude proportional to the number of objects in
the set. These representations support computations of numerical equivalence and numerical
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order. There is also evidence that animals can add analog magnitudes (e.g., Flombaum,
Junge & Hauser, 2005). In sum, that these analog magnitude representations are number
representations is shown by the fact that they track number rather than other dimensions of
the sets attended to, and by the fact that numerically relevant computations are defined over
them.

In the past eight years four different laboratories have provided unequivocal evidence that
preverbal infants form analog magnitude representations of number (Brannon, 2002;
Brannon, Abbot & Lutz, 2004; Lipton & Spelke, 2003, 2004; McCrink & Wynn, 2004a;
Wood & Spelke, 2005; Xu & Spelke, 2000; Xu, Spelke & Goddard, 2005). The first paper in
this flurry of studies is by Fei Xu and Elizabeth Spelke, who solved the problem of how to
control for other possible bases of judgment (cumulative surface area, element size, density)
in a large number habituation paradigm. The idea underlying habituation studies is simple:
one shows a baby stimuli with a common property, one at a time, measuring how long the
baby maintains interest. After the baby has become bored, one presents either another
stimulus with that property or a stimulus with a contrasting property. If the infant recovers
interest (dishabituates) only in the latter case, then we can conclude that the infant was
sensitive to the property in question. Xu and Spelke habituated 6-month-old infants to
displays containing 8 dots or to displays containing 16 dots (Figure 3). Possible confounds
between number and other variables were controlled either by equating the two series of
stimuli on those variables, or by making the test displays equidistant from the habituation
displays on them. Habituated to 8-dot displays, 7-month-old infants recovered interest when
shown the novel 16-dot displays, while generalizing habituation to the novel 8-dot displays.
Those habituated to 16-dot displays showed the reverse pattern. Subsequent studies
duplicated this design (and the positive result) with 16-dot vs. 32 dot comparisons and with
4 dot vs. 8 dot comparisons. Thus, the infants showed a sensitivity to cardinal values of sets
outside the range of object-tracking mechanisms, when properties of the arrays other than
the number of dots each was composed of were strictly controlled for.

That analog magnitude representations support these discriminations is shown by the fact
that success is a function of the ratio of the set sizes. In all of the above studies, in which
infants succeeded with a 2:1 ratio, they failed in comparisons that involved a 3:2 ratio (i.e.,
they failed to discriminate 8-dot from 12-dot arrays, 16-dot from 24-dot arrays, and 4-dot
from 6-dot arrays. Also, these researchers have found that sensitivity improves by 9 months
of age. Infants of this age succeed at 3:2 comparisons across a wide variety of absolute set
sizes, but fail at 4:3 comparisons.

These baby experiments involve dot arrays. Animals create analog magnitude
representations of number of sounds, number of bar presses, and number of key pecks, as
well as of sets of visually presented individuals (Dehaene, 1997; Gallistel, 1990). Infants
also represent the cardinal values of sets of individuals that are not visually specified.
Jennifer Lipton and Elizabeth Spelke showed that 6-month-old infants discriminate 8 from
16 tones, and also 4 from 8 tones, when continuous variables are controlled in a manner
analogous to the Xu and Spelke studies, and they fail to discriminate 8-tone from 12-tone
sequences, or 4-tone from 6-tone sequences. Not only do 6-month infants create analog
magnitude representations of number in a sequence of tones, their sensitivity to numerical
differences is in the same ratio as for arrays of dots (between 2:1, where they succeed, and
3:2, where they fail). Also paralleling the results with dot arrays, by 9-months infants
succeed at this latter ratio, distinguishing 8-tone sequences from 12-tone sequences and
distinguishing 4-tone sequences from 6-tone sequences. Succeeding at 3:2 ratios,
irrespective of set size, infants this age fail at 5:4 ratios, failing to distinguish 5-tone
sequences from 4-tone sequences and also 10-tone from 8-tone sequences. Thus at each age
sensitivity is a function of the ratios of the number of elements in the sets to be compared,
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with older infants showing greater sensitivity (3:2 at 9-months; 2:1 at 6-months; Lipton &
Spelke, 2003, 2004). Parallel findings are observed in studies of infants’ enumeration of
events such as jumps of a puppet (Wood & Spelke, 2005).

In all of the above studies we can be confident it is number infants are responding to,
because every other variable is equated either across the habituation stimuli or across the test
stimuli. In these studies, the child’s attention is drawn when there is a different number of
dots, jumps, or tones in a test set from the number in each of the habituation sets, and
discrimination follows Weber’s law. Thus, the child is using the analog magnitude system to
compute numerical equivalence. Of course, if the analog magnitude representations
underlying performance in these habituation studies are truly numerical representations,
number relevant computations other than establishing numerical equivalence should be
defined over them, and indeed this is so.

Elizabeth Brannon showed that 11-month-old infants represent numerical order using analog
magnitude representations of sets. Infants were habituated to 3 array sequences, always
increasing in number by a ratio of 2: 1 (e.g., 2, 4, 8; 4, 8, 16; 1, 2, 4). Continuous variables
were controlled as in the Xu and Spelke studies. After habituation, infants were shown a
novel increasing sequence (3, 6, 12) or a decreasing sequence (12, 6, 3). They remained
bored by the the former and dishabituated to the latter. Another group of infants were
habituated to decreasing sequences; they generalized habituation to the test sequence that
decreased in numerical value and dishabituated to the one that increased (Brannon, 2002).

Finally, Koleen McCrink and Karen Wynn showed that 9-month-olds can manipulate sets of
objects in the analog magnitude range to support addition and subtraction (McCrink &
Wynn, 2004a). Shown 5 objects move behind a screen, followed by another 5, infants look
longer if the screen is removed revealing a set of 5 than if a set of 10 is revealed.
Conversely, if the first set was 10, and 5 objects were seen to leave, infants looked longer if
upon the screen’s removal 10 were revealed. These objects were each constantly expanding
and contracting so it was possible to control for summed continuous variables as a basis of
response. In sum, analog magnitude representations of number are available at least by 7-
months of age. Preverbal infants represent the approximate cardinal value of sets, and
compute numerical equivalence, numerical order, addition, subtraction, and ratios (McCrink
& Wynn, 2004b) over these representations. Given the ancient evolutionary history of
analog magnitude number representations, it is very likely they are the output of innate
perceptual analyzers.

In sum, the evidence points to a system of representation in which number is encoded in the
brain by some analog symbol that is a linear or logarithmic function of number. It is easy to
imagine a system of representation with these properties. For example, Church and Meck
(1984) proposed an accumulator model. Imagine a pulse generator that constantly creates
some source of energy, and a gate that can allow energy to flow into a device that registers
how much has passed through. If the gate were programmed to open for a fixed amount of
time (e.g., 250 msec) for each individual in a set, the energy in the accumulator would be a
linear function of the number of individuals in the set. Adding could be achieved by
combining the energy in two accumulators. Many other models have be proposed, some
operating on the individuals in the set in parallel (e.g., Dehaene & Changeux, 1993).
Considering these models, we can say more about what is represented explicitly and what
implicitly by this system. The symbols themselves are explicit. They are the output of
analyzers that take sets of individuals as input and they are available to central processors
for a wide variety of computations. But much of the numerical content of this system of
representation is implicit. There is no explicit representation of the axioms of arithmetic, no
computations of 1-1 correspondence that establish numerical equivalence. Aspects of these
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principles are implicit in the operation of the input analyzers and in the computations
defined over analog magnitudes, but they need not be available for the child to base any
decisions on. This case illustrates that once one has a well-confirmed model of some
representational system, one can examine that model to establish exactly what is represented
and how. Analog magnitudes are explicit symbols for cardinal values of sets, although they
only approximate cardinal values. Other numerical content is implicitly embodied in
operations that compute over these symbols; that latter knowledge is not symbolized and
thus is not input to further computations.

A second innate system with numerical content: parallel individuation of small sets
Science moves rapidly, and the infant studies reviewed above came relatively late in the
history of studies designed to show that infants are sensitive to number. The first studies,
some 20 years earlier than Xu’s and Spelke’s studies on analog magnitude representations,
concerned small sets—discriminations among sets of 1, 2 and 3 objects. These include many
2 vs. 3 habituation studies and Wynn’s 1 + 1 = 2 or 1 violation of expectancy studies (Antell
& Keating, 1983; Starkey & Cooper, 1980, Wynn, 1992b). In a violation of expectancy
study, infants watch an event unfold that either does or does not involve a magic trick. If
infants’ attention is drawn to the events with impossible outcomes, we conclude that infants’
representations of these events involve models that were constrained by the principle
violated. In Wynn’s famous study, she introduced at object onto a stage, covered it by a
screen, and then introduced a second object behind the screen. The screen was then removed
to reveal either 2 objects (expected outcome) or 1 or 3 objects (unexpected outcomes).
Infants’ attention was drawn more to outcomes of 1 or 3 objects than to outcomes of 2,
suggesting that infants’ representations of these events respected the generalization that 1 +
1 is precisely 2.

Although some have suggested that analog magnitude number representations underlie
success in these experiments (e.g., Dehaene, 1997), the evidence conclusively implicate a
very different representational system (Feigenson & Carey, 2003; Feigenson, Carey, &
Hauser, 2002; Scholl & Leslie, 1999; Simon, 1997; Uller, Carey, Huntley-Fenner, & Klatt,
1999). In this alternative representational system, number is only implicitly encoded; there
are no symbols for number at all, not even analog magnitude ones. Instead, the
representations include a symbol for each individual in an attended set. Thus, a set
containing one apple might be represented: “O” (an iconic object file) or “apple” (a symbol
for an individual of the kind apple) and a set containing two apples might be represented “O
O” or “apple apple,” and so forth. These representations consist of one symbol (file) for each
individual, and when the content of a symbol is a spatiotemporally determined object, it is
called an object file (Kahnemann, Triesman, & Gibbs, 1992). Infants also create working
memory models of small sets of other types of individuals, such as sound bursts or events,
and so I shall call the system of representation “parallel individuation” and the explicit
symbols within it “individual files.” When those individual files are object files, I refer to
them as such.

There are many reasons to favor individual file representations over analog magnitude
representations as underlying performance in most of the infant small number studies (see
Carey, in press, for a more thorough review). First, and most important, success on many
spontaneous number representation tasks involving small sets do not show the Weber-
fraction signature of analog magnitude representations; rather they show the set-size
signature of individual file representations. That is, individuals in small sets (sets of 1, 2 or
3) can be represented, and sets outside of that limit cannot, even when the sets to be
contrasted have the same Weber-fraction as those small sets where the infant succeeds.
Suppose at a given age the set size ratio an infant is sensitive to is 1:2 (as 6 month-olds are
in the large number habituation studies described above). If analog magnitude
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representations of small sets underlie infants performance, they should succeed at
discriminating 1 from 2, 2 from 4, 3 from 6, but fail at discriminating 2 from 3, 3 from 4 or 4
from 6. However, if parallel individuation underlies success, and their limit is three
individuals represented in parallel, then they should be able to encode sets of 1, 2 or 3 but
should be unable to encode sets of 4 or more.

The set-size signature of object-file representations is motivated by evidence that even for
adults there are sharp limits on the number of object-files that can be simultaneously
attended to and held in working memory (Pylyshyn and Storm, 1998; Luck and Vogel,
1997). This is what generates the prediction that if object-file representations underlie
infants’ performance in some tasks meant to reflect number representations, then infants
should succeed only when the sets being encoded consist of small numbers of objects.
Success at discriminating 1 vs. 2, and 2 vs. 3, in the face of failure with 3 vs. 4 or 4 vs. 5 is
not enough to confirm that object file representations underlie success, for Weber-fraction
differences could equally well explain such a pattern of performance. That is, ratios of 3:4 or
4:5 might exceed the sensitivity of the analog magnitude system at that age. Rather, what is
needed is success at 1 vs. 2 and perhaps 2 vs. 3 in the face of failure at 3 vs. 6—failure at the
higher numbers when the Weber fraction is the same or even more favorable than that within
the range of small numbers at which success has been obtained. This is the set size signature
of individual file representations.

This set-size signature of object-file representations is precisely what is found in some infant
habituation studies--success at discriminating 2 vs. 3 objects in the face of failure at
discriminating 4 vs. 6 objects (Starkey & Cooper, 1980). Similarly, two other paradigms
provide vivid illustrations of the set-size signature of object-file representations. In one of
them an infant watches as each of two opaque containers, previously shown to be empty, is
baited with a different number of graham crackers. For example, the experimenter might put
two graham crackers in one container and three in the other. After placement, the parent
allows the infant to crawl toward the containers. The dependent measure is which container
the baby chooses. The data reflect the set size signature of parallel individuation.
Apparently, three is limit on parallel individuation in babies. Ten- to 12-month-olds infants
succeed at 1 vs. 2, 2 vs. 3; and 1 vs. 3, and fail at 3 vs. 4, 2 vs. 4, and even 1 vs. 4
(Feigenson & Carey, 2005; Feigenson et al., 2002). One:four is a more favorable ratio than
2:3, but infants fail at 1 vs. 4 comparisons and succeed at 2 vs. 3. This pattern of
performance shows that analog magnitude representations do not underlie performance on
this task; performance does not accord with Weber’s law. Note also that 5 crackers are
involved in each choice, so the total length of time of placements is equated over these two
comparisons.

This is a striking result. Infants could succeed at 1 vs. 4 comparisons on many different
bases: putting 4 crackers into a bucket takes much longer, draws more attention to that
bucket, and so on, yet infants are at chance. Although infants could solve this problem in
many different ways, apparently they are attending to each cracker, creating a model of
what’s in the container that contains one object-file for each cracker. As soon as one of the
sets exceeds the limits on parallel individuation, performance falls apart. This finding
provides very strong evidence that parallel individuation underlies success on this task.

Convergent data from a second paradigm involving small sets of objects also demonstrate
the set-size signature of parallel individuation. The task requires infants to search in a box
into which they can reach but not see. When 12-to 14-month old infants have seen 1, 2 or 3
objects placed into a box, they search for exactly 1, 2, or 3, respectively. But when they have
seen 4 objects placed in the box, they are satisfied when they have retrieved only 2 or even
only 1. That is, as in the cracker choice experiments, infants distinguish 2 from 3 (see 3
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hidden, retrieve 2, expect another in there), but fail to distinguish 4 from 1 (see 4 hidden,
retrieve 1, do not search further for any more in there; Feigenson & Carey, 2003, 2005).
Performance falls apart when the set to be represented exceeds the limit on parallel
individuation of objects, not when the ratio of objects exceeds some limit. Again, 4:1 is a
more favorable ratio than 3:2, yet infants search for additional objects having seen 3 placed
into the box and having retrieved only 2, but fail to search for additional objects having seen
4 placed into the box and having retrieved only 1.

That infants’ performance shows the set-size signature of parallel individuation rather than
the constant Weber ratio signature of analog magnitudes shows that analog magnitude
representations cannot subserve performance on the small number tasks described above.
Rather, these arrays are being represented in short-term memory models that consist of one
symbol for each individual in the small set being represented. Although some describe what
I am calling the system of parallel individuation a “small number system,” that is a
misleading name. The purpose of parallel individuation is to create working memory models
of small sets of individuals, in order to represent spatial, causal, and other relations among
them. Unlike analog magnitude number representations, the parallel individuation system is
not a dedicated number representation system. Far from it. The symbols in the parallel
individuation system explicitly represent individuals. Figure 4 depicts several different
individual file representations of two boxes. In none of these alternatives is there a symbol
that that has the content “two;” rather the symbols represent the boxes. The whole model
{box box} represents two boxes, of course, but the content “two” is only implicit.
Furthermore, the quantitative calculations over parallel individuation models in working
memory often privilege continuous variables (such as total event energy, total contour
length, total surface area) over numerical equivalence. So why I am discussing these models
in a paper on the origin of natural number?

Parallel individuation models are shot through with numerical content, even though that
numerical content is merely implicit in the computations that pick out and index small sets
to represent, that govern the opening of new individual files, that update working memory
models of sets as individuals are added or subtracted, and that compare sets on numerical
criteria. The creation of a new individual file requires principles of individuation and
numerical identity; models must keep track of whether this object or jump, seen now, is the
same one as that object seen before, or this sound just heard, is the same one as that just
heard previously. The decision the system makes dictates whether an additional individual
file is established, and this guarantees that a model of a set of three boxes will contain three
box symbols. Computations of numerical identity are (as their name says) numerical
computations. Also, the opening of a new individual file in the presence of other active files
provides an implicit representation of the process of adding one to an array of individuals.
Finally, and this is a very important point for what is to come, working memory models of
two sets of individuals can be simultaneously maintained, and when individual-file models
are compared on the basis of 1-1 correspondence, the computations over these symbols
establish numerical equivalence and numerical order. Remember the cracker choice
experiments: infants succeed at 3 vs. 2 comparisons, even though the total number of
individuals involved in these events is 5. They fail when the number of individuals in either
set exceeds the limits of parallel individuation.

Several recent studies show that infants carry out computations on these models that
determine numerical equivalence and numerical order. To this end, infants compute 1-1
correspondence between representations of small sets held in short term memory. I will use
one of these studies for illustration. Lisa Feigenson and I studied the nature of the
computations that determined whether infants searched for additional objects in the box in
the studies described above. We carried out a version of this study in which infants saw 2
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small objects, e.g., cars, placed into the box, one at a time. We then gave them the box, and
they reached in and retrieved a car—either one of the cars they had seen, or a car that was
twice the surface area and 4 times the volume but was otherwise identical to the cars they
saw hidden. Infants showed by their subsequent search that they expected exactly one more
in either case. They were oblivious to the cumulative continuous variables; their reaches
were guided by how many objects they represented in the box (Feigenson & Carey, 2003).
They must have been computing 1-1 correspondence between the individuals in their model
of what was in the box and their representations of what they had so far retrieved from it.

I am often asked why infants do not draw upon analog magnitude representations in these
tasks. Analog magnitudes are defined for small set sizes, certainly for adults (Cordes,
Gelman & Gallistel, 2001) and probably for infants (Brannon, 2002). I do not know for sure,
but aspects of the stimulus presentation that draw attention to objects as individuals (a small
set, with individuals moving independently of each other and/or with each individual object
very different from the others in the set) apparently leads infants to attempt to model the
situation with parallel individuation. Presenting large sets, outside of the range of parallel
individuation, often with little time to attend successively to each separate individual,
encourages analog magnitude representations. As cognitive scientists, we do not attempt to
explain why any particular thought is entertained at any given moment; rather we attempt to
isolate distinct systems of representation, so as to characterize them. The studies I have
described implicate two separable systems of representation with numerical content, each
with very different properties.

A third innate system of representation with numerical content: Natural
language quantifiers

Please dwell upon the experiments that reveal the set-size signature of parallel individuation.
Infants choose a set of 3 crackers over a set of 2 crackers or a single cracker; and shown 3
balls placed into a box, having retrieved 2 or 1 of these, they search for the remaining ones.
However, they are at chance in a comparison of 1 and 4 crackers, and shown 4 balls placed
into a box, they are satisfied after retrieving only 1. These are very counterintuitive
phenomena. Not only are infants failing to encode the set of four as approximately four
(using analog magnitudes), they are failing to encode it as “plural,” for if they had done so,
they would represent it as more than one.

The infants in these studies are 12- to 14-months of age; the failures at 1 vs. 4 comparisons
in the box-search task are also observed at 16, 18, and 20 months of age (Barner, Thalwitz,
Wood & Carey, 2007). In spite of these failures, we now know that there are circumstances
in which prelinguistic infants and non-human primates reveal representations of the
singular-plural distinction. In the above studies, the individuals move independently of each
other, encouraging the infants to deploy parallel individuation. If sets of objects move as
coherent wholes (e.g., glued to a platform, such that the items move together), young infants
and rhesus macaques distinguish singletons from sets of more than one and fail to
distinguish among plural sets of different numerosities, at least for small sets (e.g., 2, 3, 4,
and 5; Barner, Wood, Hauser & Carey, 2008; Barner, Thalwitz, Wood & Carey, unpublished
data). Again, we do not know why monkeys and infants do not draw on analog magnitudes
on these tasks, but the data indicated that they do not, whereas their pattern of behavior
reflects a categorical distinction between singletons, on the on hand, and pluralities, on the
other.

Infants learning English come to comprehend some explicit markers of the English singular/
plural distinction (e.g, “are some” vs “is a”) by 22 months of age. The available evidence
suggests that the singular determiner “a” is given the adult analysis as soon as it is acquired,
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referring to a single individual of a kind (rather than to a proper noun). By this age infants
distinguish “ this is a blicket” from “this is Blicket,” as well as “there is a doll” from “there
are some dolls.” The ease of mastering determiners and other quantifiers, as well as
evidence for prelinguistic availability of the singularity/plurality distinction, suggests that
the meanings that underlie the quantifiers of natural language are also part of the human
innate endowment.

What are those meanings? Semanticists such as Link (1987), Chierchia (1998), and others
show that the meanings of quantifiers are formulated over representations of atoms
(individuals), and the semilattice of sets that can be constructed from a domain of atoms.
Unlike the two representational systems described above, little is known about exactly how
(format) the meanings of quantifiers are represented in the mind.

Conclusions: The building blocks for representations of natural number
The three systems of representation described above are the only innate systems of
representation with numerical content for which we currently have any evidence. This does
not mean, of course, that there might not be others, not yet discovered or described. Perhaps,
but I doubt it.

These representations all presuppose attentional capacities to select sets of individuals, and
to keep track of which sets are being quantified. The input to analog magnitude
representations are sets of dots, objects, sounds, actions, and for a representation of
approximate cardinal value to do the infant or animal any good, it must be predicated of
some particular set. Similarly, in parallel individuation, when the child compares two sets on
the basis of 1-1 correspondence, she must be able to keep track of which is which. And
natural language quantifiers explicitly quantify particular sets of individuals in various ways.
However, as I now show, none of these quantificational resources deploy symbols for
integers.

Conceptual Discontinuity
In cases of conceptual discontinuity, no antecedent system of representation expresses the
concepts of a later developing one. To establish discontinuity, then, one must characterize
two empirically supported successive systems of representation (conceptual systems 1 and 2;
CS1 and CS2), and demonstrate why CS2 had more expressive power than CS1. Let us
consider each of the above described representational systems as CS1s. None of these
systems of representations contains any symbols that represent any natural numbers.

The ontogenetically earliest system of representation that contains symbols for natural
numbers (at least a finite subset of them), is the verbal numeral list representation of the
positive integers, characterized by Gelman and Gallistel’s (1978) counting principles. The
counting principles: the numeral list is strictly ordered (stable order); in counting, numerals
are assigned to individuals in a set in 1-1 correspondence (1-1 correspondence); the last
numeral assigned represents the cardinal value of the set (the cardinality principle). This
system of representation is typically mastered by age 3 ½ or 4 by children growing up in a
numerate culture. It expresses a finite subset of the natural numbers. The principles that
underlie it are recognized to be extendable to arbitrarily large numbers by children a few
years older (Hartnett and Gelman, 1998), at which point children have constructed a
representation of natural number.

Just as was the case of the three systems of mental representation described above, one may
ask how the integer list, when deployed in counting, represents number. The explicit
symbols (“one,” “two,” and so on) represent exact cardinal values of sets. However, much of
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the numerical content of the numeral list is implicit. The counting principles guarantee that
the known numerals represent natural numbers, because they guarantee that they respect the
successor function (i.e., “seven” means 1 more than 6, which is one more than 5, etc.) But
there is obviously no explicit representation of the Peano-Dedekind axioms, and this system
of representation when first mastered serves only to enumerate sets of individuals.

Still, it is important to stress what an achievement the numeral list representation is, both
historically and ontogenetically (see below). It is not cross-culturally universal, nor is it even
the historically earliest external symbol system with numerical content (rather, tally systems
were; see Hurford, 1987). I will take it to be CS2. I now turn to the discontinuity between
the innate symbol systems and this CS2, the integer list representational system.

Analog magnitude representations of number lack the expressive power of any system of
representation of the natural numbers, even the numeral list representation of a finite subset
of integers, in two crucial respects. First, because analog magnitude representations are
inexact and discriminable only to a given Weber ratio, they fail to capture small numerical
differences between large sets of objects. The distinction between eight and nine, for
example, cannot be captured reliably by the analog magnitude representations of human
adults. For any creature’s analog magnitude system there will be a number, n, such ahtat the
distin tion between an adn n + 1 will not be captured reliably. Relatedly, analog magnitude
representations of cardinal values are not built around, nor can they express, the successor
function. Rather, they positively obscure the successor function. They contain no
representation for exactly one. And since numerical values are compared by computing a
ratio, the difference between one and two is experienced as different from that between two
and three, which is again experienced as different from that between three and four. And, of
course, the difference between twelve and thirteen is not experienced at all, since twelve and
thirteen, like any higher successive numerical values, cannot be discriminated. In sum,
analog magnitude representations are not powerful enough to represent the natural numbers.
They do not provide exact representations of numbers and they obscure the successor
function, which is constitutive of natural number.

The parallel individuation system does not remotely have the capacity to represent natural
number. Unlike the analog magnitude number representation system, the parallel
individuation system is not dedicated to number representations. Number is only implicitly
represented, in that computations of 1-1 correspondence are made over symbols for
individuals represented in parallel in models of arrays of objects and events. The system of
parallel individuation contains machinery for indexing and tracking sets of individuals, but it
contains no symbols for cardinal values. The only symbols in such models represent the
individuals themselves. Also, the system of parallel individuation has an upper bound at
very low set sizes indeed—three for infants. With this system of representation, infants
cannot even represent 4 (even implicitly), let alone 7 or 32 or 1,345,698.

Verbal numerals are quantifiers, but the universal system of natural language quantifiers
(words or morphemes that express concepts like singular, plural, all, each, some, and so on)
do not represent integers. They do not express exact cardinal values of sets.

In sum, none of the three innate systems of representation with numerical content has the
capacity to represent even a finite subset of the natural numbers, whereas CS2 (the numeral
list representation of number) does. CS2 is discontinuous with any attested CS1.

Empirical Evidence for Conceptual Discontinuity
Hypothesized conceptual discontinuities make three crucial predictions. First, CS2 should be
very difficult to learn. Second, learners should make systematic, far-reaching errors, as they
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initially assimilate the evidence for CS2 to representational systems very different from it.
Both of these predictions are confirmed in the case of children’s mastering the numeral list
representation of natural number. Third, CS2 should not be a feature of all cultures in the
historical record, whereas the innate representational systems should be. This third
prediction is also borne out in ethnographic studies of numerical cognition in adults from
cultures with no numerical list, as well as studies of the historical construction of this
representational resource (e.g., see Gordon, 2004; Hurford, 1987; Pica, Lerner & Izard,
2004).

Children learn to count during the ages of 2 to 4 years, and learning to count is far from
easy. Although young toddlers use a stably ordered list and count each object just once,
honoring the stable order and 1-1 correspondence principles (two of the counting principles
that guarantee that counting represents natural number), they do so for almost a year and a
half before they figure out the cardinality principle (that the last number reached in a count
represents the cardinal value of the set)—that is, before they figure out how counting
represents number (Fuson, 1998, LeCorre et al., 2006; Wynn, 1990, 1992a). Indeed, even
after they have learned ten ordered numerals, they have assigned no numerical meaning to
any of the numerals in their count list. They cannot even hand a person “one penny” (from
several) if asked, or indicate which of two sets (a set of one and a set of several) has “one.”

Karen Wynn (1990, 1992a) studied very young counters—children who had a stably ordered
count list to “ten” and who could apply the count routine to a set of objects, respecting 1-1
correspondence. She showed that from very early in the process of learning to count children
know what “one” means. They can give you one penny from a pile of pennies if asked to,
and they correctly distinguish a card with one fish from a card with any other number of fish
if asked to indicate the card with “one fish.” But they have not assigned a cardinal meaning
to any other numeral on their count list. The striking phenomenon Wynn discovered (and
you can definitely try this at home if you have a handy two-year-old) is that if you ask for
“two pennies” or “four pennies,” many young children merely grab a handful, with no
relations to the number requested. That is, they do not give more for when asked for four
than when asked for two. Notice, they must know that the other words in the count sequence
contrast with “one.” They always grab a random number of objects greater than one when
asked to hand over “two, three, four …” objects. If asked to indicate the card with “three”
fish, they successfully point to a card with three fish when it is contrasted with a card with
one, even though their choices are random when they offered a choice between cards with
three and two. Such children are called “one”-knowers, for they know the meaning only of
the verbal numeral “one.” They have no idea which particular cardinality any of their other
numerals refer to.

Consistent with the claims that preverbal representations of number are quite different from
counting, and that learning the meaning of the count list is very difficult, children remain
“one”-knowers for 6 to 8 months before they figure out what “two” means. Upon becoming
“two”-knowers, they can construct sets of two when asked for “two,” and tell which of two
cards has “two fish” when given a contrast between an array of 2 fish and an array of 1 or an
array of 3 or more. But they still respond randomly on “three.” They are “two”-knowers for
several months, and then become “three”-knowers. LeCorre and Carey (2007) showed that
all children who have worked out how counting represents number have previously assigned
“one” through “four” numerical meanings. Thus, children laboriously work out numerical
meanings for the numerals “one” through “four” over a 1 and 1/2 year period before they
figure out how to use counting to implement the successor function. Children who have not
yet figured out the cardinality principle (the last numeral reached in a count represents the
cardinal value of the set) are called “subset-knowers,” for they have assigned cardinal
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meanings to only a subset of the numerals in the count list. Those who have worked out how
counting represents number are called “cardinal principle-knowers.”

The ways in which CS2 transcends core cognition makes sense of why it takes children a
year and a half or two years to figure out how counting represents number. Not only does
the discontinuity hypothesis require that constructing CS2 should be difficult, but it also
predicts that behavioral measures will reflect a qualitative change in representational
capacity as CS2 is constructed. We should see within-child consistency on a whole variety
of tasks that reflect CS2. And indeed we do. There is evidence from a wide variety of
measures for a qualitative shift between subset-knowers, on the one hand, and cardinal
principle-knowers, on the other. There is also evidence for consistency within knower-level.
A “one”-knower reveals knowledge only of the numeral “one” on every task that probes for
such knowledge. Ditto for “two”-, “three”- and “four”-knowers.

LeCorr, Brannon, Van de Walle, & Carey (2006) provide a thorough documentation of these
claims; here I give just a few examples of the striking within-child consistency on several
measures that suggests a qualitative shift in understanding how counting represents number
upon becoming a cardinal principle-knower. In Karen Wynn’s (1990, 1992a) original
studies, subset-knowers almost never counted to produce sets (asked to give five apples,
they merely grabbed a handful), whereas cardinal principle-knowers almost always counted
out large sets. Also, when simply asked to count a set of objects, children in both groups
could do so with few errors, but then after counting, if asked “How many was that?” the
cardinal principle-knowers almost always merely repeated the last word of their previous
count, whereas subset-knowers rarely did so. Rather, subset-knowers recount, or very often
provide a numeral that does not match the last word of their count. This suggests that subset-
knowers do not realize that the last word reached in a count represents the cardinal value of
the set. Later studies confirmed these findings and extended them. Even cardinal principle-
knowers sometimes make mistakes when creating sets of a requested number. Children are
asked to count and check their answers. When the count reveals an incorrect set-size,
cardinal principle knowers virtually always correct appropriately. Subset-knowers, in
contrast, leave the set unchanged or correct in the wrong direction (e.g., add more objects
when the count revealed that there were already too many) on more than 70% of the trials
(Wynn, 1990, 1992a; LeCorre, et al., 2006). These analyses show that subset-knowers differ
qualitatively from cardinal principle-knowers with respect to the representations that support
the meanings they have assigned verbal numerals.

Within-child consistency is also found within knower levels. Being a “one”-knower
according to Wynn’s “give-a-number” task predicts which pairs of sets children will succeed
on when asked “which is n” (i.e., any contrast between a set of one and a set with any other
number; no other contrast). Ditto for “two”-, “three-” and “four-” knowers. Similarly,
knower level on Wynn’s task predicts which set sizes children can successfully estimate
(without counting) when simply shown a set of entities and asked how many it contains (Le
Corre et al, 2006; LeCorre and Carey, 2007). A “two”-knower says “one” for sets of 1 and
says “two” for sets of two and uses higher numerals randomly for sets from 3 to 10.

In sum, two kinds of analyses support the claim that the representational system that is the
verbal count list is discontinuous with antecedent representations. Most importantly, I have
offered empirically supported characterizations of three such antecedent systems of
representations with numerical content, and shown how they lack the expressive power of
the count list. Secondly, I have offered evidence the meanings of verbal numerals are, as
predicted, very difficult to learn, and are systematically misinterpreted during the learning
process.
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The Explanatory Challenge: Quinian Bootstrapping
I turn now to the explanatory challenge: what learning processes can create representational
resources with more expressive power than, or qualitatively different from, their input? This
is one place where the project of characterizing the logical tool box available to human
beings, including representational capacities drawn upon in number representations, is
important. In the bootstrapping mechanism sketched below, I appeal to an old favorite—the
uniquely human capacity to create external symbols. I assume that the capacity for human
language—the capacity to form lexical, syntactic, and morphological representations—has
innate support, as do the logical capacities needed to express meanings and the inferential
relations among propositions, and to engage in a variety of modeling processes. I will help
myself to many of these capacities in accounting for the capacity to represent natural
number. But the human capacities for language and logic do not, by themselves, account for
the origin of concepts like 32, infinity, gene, cancer, and democracy. We seek specific
proposals for how new conceptual systems (in this case a system of natural number
representations) are built.

This explanatory challenge of accounting for specific conceptual innovations has been
extensively discussed by historians and philosophers of science, and many appeal to what
are called “bootstrapping” processes as an explanation for how representational resources
that transcend their input can be created. The very word “bootstrapping” is a hyperbolic
metaphor, meant to capture the deep difficulty of the problem. After all, it is impossible to
pull oneself up by one’s bootstraps. Neurath’s metaphor of building a boat while already in
the middle of the ocean also captures the difficulty of the problem—that while not grounded
one must build a structure that will float and support you. Not grounded in this case means
that the planks one is building the boat with are not interpreted concepts one already
represents. In other metaphors, the learner’s concepts are partially grounded, as in Quine’s
ladder metaphor. Here, one builds a ladder grounded in one conceptual system until one has
a platform that is self-sustaining, and then one kicks the ladder out from under. And in a
final Quinian metaphor, one is scrambling up a chimney supporting oneself by pressing
against the sides one is building as one goes along. Quine’s metaphor captures the fact that
new conceptual systems are used as they are built, even if they do not yet have their final
form. This metaphor stresses, as does Neurath’s boat, that the structure one builds consists
of relations among the concepts one will eventually attain—it is that structure of
interrelations among the to-be-attained concepts (the sides of the evolving chimney, the boat
itself, the platform from which the ladder can be kicked away) that serves the crucial
bootstrapping role. See Quine (1960, 1969, 1977) for his own elaboration of Quinian
bootstrapping.

Although such metaphors are evocative—of both the problem to be solved and the solution
—Quine never describes in detail how this learning process operates. These metaphors are
hardly satisfying to a cognitive scientist trying to understand bootstrapping mechanisms. As
I illustrate here, I believe it is possible to flesh out the metaphors with appeals to processes
that are fairly well understood at a computational level.

Quinian bootstrapping processes require explicit symbols, such as those in written and
spoken language or mathematical notational systems. The aspect of the bootstrapping
metaphor that consists of building a structure while not grounded is captured by the utterly
unremarkable fact that learners often master a set of new terms together, and represent some
interrelations among a new system of symbols to one another, directly, rather than by
mapping each symbol onto preexisting concepts (Block, 1986). The symbols so represented
thus serve as placeholders, at most only partially interpreted with respect to antecedent
concepts. In historical cases, placeholder structures are often created by abductive leaps
(e.g., Maxwell’s guess that the mathematics of Newtonian forces in fluid media would be
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the relevant mathematics to model Faraday’s phenomena; see Nersessian, 1992). In
ontogenetic cases placeholder structures are formed through ordinary language learning; a
set of terms are acquired, interdefined, but not yet interpreted in terms of already existing
representations. This is one essential component of Quinian bootstrapping.

The second essential component is the process through which the placeholders become
interpreted. As historian and philosopher of science Nancy Nersessian (1992) argues, these
are modeling processes. Often, but not always, processes of analogical mapping are
involved. Other modeling processes, such thought experimentation and limiting case
analyses, have roles in Quinian bootstrapping as well. Several properties of these modeling
processes are important. They are not deductive, and there are no guarantees in
bootstrapping. The structures that are tentatively posited either work, in the sense of
continuing to capture the observed data that constrain them, or they do not. Finally, the
modeling processes are abstraction processes—they serve to combine distinct
representational resources, and to make explicit what is implicit. They are sensitive to the
constraints that are implicit in each system, seeking to honor them wherever possible.

Bootstrapping the Numeral List Representation of Natural Number
The output of the learning process of interest here is the numeral list representation of
natural number. The problem of how the child builds an numeral list representation
decomposes into the related subproblems of learning the ordered list itself (“one, two, three,
four, five, six …”), learning the meaning of each symbol on the list (e.g., “three” means
three and “seven” means seven), and learning how the list itself represents number, such that
the child can infer the meaning of a newly mastered numeral symbol (e.g., “eleven”) from
its position in the numeral list.

The child first learns “one, two, three, four, five…” as a list of meaningless lexical items.
There is no doubt that children have the capacity to learn meaningless ordered lists of words
—they learn sequences such as “eeny, meeny, miny, mo,” the alphabet, the days of the
week, and so on. Indeed, nonhuman primates have this capacity; it is part of innate
computational machinery (e.g., Terrace, Son, & Brannon, 2003). This step in the learning
process—learning an arbitrary ordered list (“one, two, three, four, five, six…”) is a
paradigmatic example of one aspect of Quinian bootstrapping: the meanings of the counting
words are exhausted, initially, by their interrelations, their relative order in the list and their
place in the numerically meaningless count routine. At this point in the process, the verbal
numerals are placeholders with respect to the numerical meaning they will come to have.

Children do not learn the numerical meaning of “one” in the context of counting. “One” is
much more frequent in speech to children as a quantifier than embedded in the count routine
(Sarnecka, Kamenskaya, Yamana, Ogura, & Yudovina, 2007). “Can you give me one?”
“Would you like that one?” “I’d like one cupcake.” As Paul Bloom and Karen Wynn (1997)
demonstrated, from the outset of numeral production, children correctly use numerals in the
syntactic positions of quantifiers. Bloom and Wynn conjectured that the semantics of
quantifiers helps children recognize the numerical meaning of “one.” Three sources of
evidence support Bloom and Wynn’s conjecture. First of all, the partial meanings children in
the subset-knower stage assign to numerals implicate hypothesis testing over the space of
quantifier meanings. For example, for “one”-knowers, “two, three, four” and so on each
mean essentially “plural” or “some.” Second, learners of Japanese and Mandarin, classifier
languages with no singular-plural distinction, learn to count as early as do learners of
English, and have equivalent number word input, but do not become “one”-knowers until
several months later than do English-speakers (Sarnecka et al. 2007, Li, Le Corre, Shi, Jia,
& Carey, 2003). Relatively sparse number marking in syntax slows down assigning partial
meanings to the placeholder symbols in the count list. Finally, Palestinian Arabic has a dual
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marker system and also distinguishes plural morphology and collective morphology. In a
study of children’s learning number marking in Palestinian Arabic, Ravid and Hayek (2003)
found that 3-year-olds often used the numeral translated “two” instead of the dual when
referring to sets of two objects, whereas older children were unlikely to do this. This finding
is consistent with the suggestion that “two” is initially a dual marker. Dual markers are part
of the machinery of natural language quantification that distinguish pairs of individuals from
other pluralities.

Before we can understand how children work out the meaning of the count list, we must
establish what “one,” “two”, “three” and “four” mean for a “four”-knower, for it is only
after being “four”-knowers that children figure out the cardinal principle. What is the format
of the mental representations that underlie the numerical meanings subset-knowers have
created for numerals? If “two” is a dual marker for “two”-knowers, what representations
give numerical meaning to dual markers? What is the process through which a given set is
assigned one numeral rather than another?

A system of representations that draw both on the resources of natural language
quantification and parallel individuation could underlie the meanings of numerals for subset-
knowers. LeCorre and I dubbed the proposed system “enriched parallel individuation”
(LeCorre & Carey, 2007; see Mix, Huttenlocher, & Levine, 2002, for a similar proposal).

The innate parallel individuation system creates working-memory models of sets. The
symbols in these models represent particular individuals—this box, which is different from
that one. However, as detailed above, even when drawing on parallel individuation alone,
infants have the capacity to represent two models and compare them on the basis of 1-1
correspondence. For representations of this format to subserve the meanings of the singular
determiner or the numeral “one” for subset-knowers, the child may create a long-term
memory model of a set of one individual and map it to the linguistic expression “a” or
“one.” Similarly, a long-term memory model of a set of two individuals could be created and
mapped to the linguistic expression for a dual marker or “two,” and so on for “three” and
“four.” These models could contain abstract symbols for individuals ({i}, {j k}, {m n o}, {w
x y z}) or they could simply be long-term memory models of particular sets of individuals
(my head}, {my hand, my hand}… ). What makes these models represent “one” “two” and
so forth is their computational role. They are deployed in assigning numerals to sets as
follows: The child makes a working-memory model of a particular set he or she wants to
quantify, for example {cookie cookie}. He she then searches the models in long-term
memory to find that which can be put in 1-1 correspondence with this working-memory
model, retrieving the quantifier that has been mapped to that model.

This proposal is motivated by the observation that the subset-knower stage encompasses
assigning meanings to the numerals “one” through “four” only, for children are limited to
working memory models of four individuals represented in parallel. It is also consistent with
the results of an unpublished training study by Y-Ting Huang. Huang taught “two”-knowers
to reliably identify three butterflies as “three,” when faced with choices of 3 vs. 2 and with
choices of 3 vs. 4 or more. That is, she attempted to turn a “two”-knower into a “three”-
knower. Children could learn to do this, and they generalized, “three” to triples of butterflies
they had not observed in training, butterflies of vastly different sizes, shapes and markings.
However, they failed to apply “three” to sets of balls, or cats, or chairs. And they were still
“two”-knowers according to Wynn’s Give-a-Number task. Apparently, the training led them
to establish a model of a triple of butterflies, and they could compare working memory
models of other arrays of butterflies to this model on the basis of 1-1 correspondence, but it
didn’t occur to them that any array that could be put in 1-1 correspondence with this model
should be called “three.”
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All of the computational resources required for enriched parallel individuation are known to
be available to prelinguistic infants (see above, and Carey, in press for full evidence for this
claim). Prelinguistic infants create working-memory models of at least two separate sets
(recall the cracker choice experiments described above) and compare these on the basis of
1-1 correspondence (recall the search-into-the-box experiments described above). They also
treat sets as objects, quantifying over them as required by natural language quantifiers. Still,
it is important to stress that the long-term memory models that support the meanings of
singular, dual, and triple markers, as well as the child’s first numerals, are not themselves
part of the innate representational repetoire. These must be created in the course of language
learning, and for English-learning children this process unfolds for a period of over a year.

The two important planks of the bootstrapping process are constructed in parallel, largely
independent of each other. First, the child learns the explicit numeral list together with the
count routine as a numerically meaningless game. Second, the child creates numerical
meanings for some numerals—in this case “one” through “four.” These meanings are
supplied by enriched parallel individuation, and so far, no bootstrapping has occurred.

The stage is set for the completion of the bootstrapping processes. Children use the
placeholder structure to model sets of individuals in the world. They note the identity of the
words “one, two,” “three,” and “four” which now have numerical meaning, and the first
words in the otherwise meaningless counting list. Also, in the course of counting, children
discover that when an attended set would be quantified with the dual marker “two,” the
count goes “one, two,” and when an attended set would be quantified with the trial marker
“three,” the count goes “one, two, three.” The child is thus in the position to notice that for
these words at least, the last word reached in a count refers to the cardinal value of the whole
set.

At this point, the stage is set for the crucial induction. The child must notice an analogy
between next in the numeral list and next in the series of mental models ({i}, {j k}, {m n o},
{w x y z }) related by adding an individual. Remember, core cognition supports the
comparison of two sets simultaneously held in memory on the basis of 1-1 correspondence,
so the child has the capacity to represent this latter basis of ordering sets. This analogy
licenses the crucial induction: if “x” is followed by “y” in the counting sequence, adding a
individual to a set with cardinal value x results in a set with cardinal value y. This
generalization does not yet embody the arithmetic successor function, but one additional
step is all that is needed. Since the child has already mapped single individuals onto “one,”
adding a new individual is equivalent to adding one.

This proposal makes sense of the actual partial meanings children assign to number words as
they try to fill in the placeholders. The semantics of quantifiers explain these facts. It makes
sense of the fact that subset-knowers acquire the cardinal meanings of “one” “two” “three”
and “four,” and no other numeral, for only sets of these sizes are representable by models of
the sets of individuals held in parallel in working memory, thus to be matched via 1-1
correspondence to long-term memory models of sets of one, two, three, and four individuals.
Finally, Sarnecka and Carey (2008) provided direct evidence that the difference between
subset-knowers and cardinal principle-knowers is a (tacit) appreciation of how counting
implements the successor function, precisely the induction posited in the above
bootstrapping proposal. Cardinal principle-knowers, but not subset-knowers, judged that if a
hidden array they were told consisted of 5 objects had another added to it, the resultant array
must have 6 not 4 or 7.

We sought an answer to several questions. How do children assign numerical meanings to
verbal numerals, and how do children learn how the list itself represents number? The
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bootstrapping proposal provides answers to both. The meanings of “one” through “four” are
acquired just as quantifiers in natural languages are—as quantifiers for single individuals,
pairs, triples, and quadruples. These words, as well as higher numerals, also get initial
interpretations as part of a placeholder structure, the count list itself, in which meaning is
exhausted by the fact that the list is ordered. The bootstrapping process explains how
children learn how the list itself represents number, which in turn explains how they assign
numerical meaning to numerals like “five” and “seven.” When children first become
cardinal principle knowers, the meaning of “five” is exhausted by the child’s mastery of
counting. The counting principles ensure that the content of “five” is one more than four,
and the meaning of “seven” is one more than six, which is one more than five, which is one
more than four, and so on.

Interim conclusions—the construction of representations of natural
number

One surprising upshot of the above proposal is that one of the evolutionarily ancient systems
of representation with numerical content, the analog magnitude system, plays no role in
providing initial meanings for verbal numerals. LeCorre and Carey (2007) provide extensive
evidence that this is so. However, a further bootstrapping episode, within months of working
how the count-list represents number, integrates the numeral list with analog magnitude
number representation, greatly enriching their numerical content.

Clearly, when children have learned to use a count list that extends to 10 or 20 to enumerate
sets, they have not created a representation of natural number. They may not have yet
abstracted a concept number at all. However, children spontaneously use this new
representational resource to invent algorithms for arithmetic (e.g., adding by counting on),
and by age 5 or 6 many spontaneously invent arguments that there is no highest number
(e.g., one five-year old said to me: “suppose you think a gazillion is the highest number—
well, you can go a gazillion and one, a gazillion and two…”). The integer list, as part of the
count routine, is an essential representational structure along one route to constructing
representations of integers.

I have argued here that the numeral list representation of number is a representational
resource with power that transcends any single representational system available to
prelinguistic infants. When the child, at around age 3 ½, has mastered how the count
sequence represents number, he or she can represent any exact cardinality expressed in their
count list. Before that, he or she has only the quantificational resources of natural languages,
parallel individuation representations that implicitly represent small numbers, and analog
magnitude representations that provide approximate representations of the cardinal values of
sets.

Additionally, I have taken on the challenge of specifying a learning mechanism that can
underlie specific developmental discontinuities—Quinian bootstrapping. Quinian
bootstrapping involves, but is not exhausted by, garden-variety learning processes:
association, the mechanisms that support language learning, and so on. In addition it
involves noticing analogies and making inductive and abductive leaps. The specific
bootstrapping proposal sketched here depends on the analogy between next on the numeral
list and next state after additional individual has been added to a set.

In Quinian bootstrapping, an explicit structure is learned initially without the meaning it will
eventually have, and at least some relations among the explicit symbols are learned directly
in terms of each other. The list of numeral words and the counting routine are learned as
numerically meaningless structures. Whereas order is essential to numerical representations,
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ordered relations in themselves are much more general and thus not uniquely numerical. The
ordering of the number words exhausts their initial representational content within the
counting routine and plays a role in the mappings and inductions through which counting
comes to have numerical content.

Quinian bootstrapping depends upon integrating previously distinct representations. This is
where the new representational power comes from. The concepts set, individual, singular,
plural, and perhaps dual and triple are explicitly available to support the learning of
quantifiers, but are only implicit or absent in parallel individuation and analog magnitude
representations. In analog magnitude representations, numerical distinctions are explicitly
symbolized that are unmarked in natural language quantifiers or parallel individuation (e.g.,
35 vs. 40), and although analog magnitude representations may play no role in the child’s
learning how counting represents number, they are integrated with counting some six
months later (LeCorre & Carey, 2007). And the representations that articulate the parallel
individuation system contain computations that embody the successor function, whereas
neither of the other systems does. The bootstrapping process (which depends on analogical
mapping) creates an explicit representational system with all of these properties, a
representational system that maps onto each of its sources and thus serves to integrate them.

Kronecker was wrong. Natural number is a human construction. I have provided here one
worked example of the creation of a new representational resource with more power than the
representations upon which it is built. The lessons I wish to draw, however, are very general.
Such creations occur repeatedly, both historically and within the individual child. Within
mathematical representations, much has been written about the creation of 0, negative
numbers, and rational numbers. Each of these developments transcends the power of the
numeral list representation that is the focus of the present paper, and each requires further
episodes of Quinian bootstrapping (see Carey, in press, for a discussion of the construction
of rational number in middle childhood). Similarly, within the history of science, theory
changes that involve conceptual change require the creation of new representational
resources that allow thoughts that were previously unthinkable, and these theory changes
also require Quinian bootstrapping (Carey, in press).

Some final lessons
In Carey (in press) I draw several general lessons from case studies such as that sketched
here. Concerning the existence and nature of innate conceptual representations, the analog
magnitude system of representation is one of several systems of core cognition. Systems of
core cognition include innate representations with conceptual content. They are supported
by innate perceptual input analyzers that identify the entities in their domains, they have
long evolutionary histories, and they operate continuously throughout the life span. The
format of representation in core cognition is iconic. It is an empirical claim that there are
systems of representation with these properties. Analog magnitude number representations
do. Another system of core cognition includes representations of objects and their physical
interactions and yet another includes representations of agents, their goals, and other
intentional states.

Second, most of human cognition does not have the properties of core cognition: it is not
innate, it is not shared with other animals, its symbols are not iconic nor the output of innate
perceptual input analyzers, and it is not continuous throughout development. Thus, a theory
of conceptual development must account for the human capacity for conceptual systems so
utterly different from those shared with other animals. Clearly, the human language faculty
is at the heart of such a theory. Beyond garden variety language learning, the human
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capacity for external symbols is essential for the creation of the placeholder structures of
Quinian bootstrapping which in turn play a central role in conceptual discontinuity.

Finally, a full account of particular representational systems (origin, format, and
computational role) allows us to see what determines the content of the symbols therein.
With respect to core cognition, an information semantics applies—the innate perceptual
mechanisms that identify entities in the domain and innate conceptual role guarantee that the
symbols are causally connected those entities they represent. With respect to symbols in
later developing representational systems, both information semantics and conceptual role
semantics have parts to play in content determination. The whole story includes some
speculations about how the details of the acquisition process might help solve the problem
of characterizing which aspects of conceptual role are content determining. For the whole
story, see Carey (in press).
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Figure 1.
External analog magnitude representation of number in which number is represented by line
length.
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Figure 2.
Examples of stimulus lists from Brannon & Terrace (1998).
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Figure 3.
Sample habituation sequences and test stimuli from Xu & Spelke (2000).
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Figure 4.
Two versions of the memory structures that might subserve parallel individuation of small
sets of objects. In one, each object is represented by an object-file that abstracts away from
specific features (OBJ). In the other, each object is represented by an object-file on which
shape, color, texture and spatial extent features have been bound.
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