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1. Introduction

The seminal work by Gelman and Gallistel (1978) overturned the (then) Piagetian
orthodoxy concerning the ontogenesis of the capacity to represent the natural num-
bers. Piaget (1952/1941) offered his famous studies on number conservation as evi-
dence that children do not have a concept of number until age 6 or so. He
explained this putative late emergence in terms of the absence of logical abilities
required to support number representations, which he argued are not achieved until
the stage of concrete operations. Gelman and Gallistel (1978) replied that any child
who counted could thereby represent natural number, so long as the child followed
what they called the ‘‘counting principles’’ (stable order, 1–1 correspondence and the
cardinal principle that the last numeral reached in a count represents the cardinal
value of the enumerated set). Indeed, these three counting principles guarantee that
verbal numerals represent quantities that satisfy the successor function. That is, for
any set whose cardinality n is represented by a given numeral, the next numeral in the
list will represent cardinality n + 1.

Since the late 1970s, Gelman and Gallistel have systematically studied the acqui-
sition of verbal counting in childhood as a window onto the ontogenetic sources of
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knowledge of the natural numbers (Gallistel & Gelman, 1992, 1978; Gelman &
Lucariello, 2002). They have argued that the way children acquire verbal counting
shows that knowledge of the counting principles is innate. The more recent formu-
lations of the hypothesis have taken preverbal knowledge of the counting principles
to be implemented in the mechanism that generates analog representations of num-
ber (e.g., Gallistel & Gelman, 1992; Gelman & Lucariello, 2002) This is the mecha-
nism Gallistel has in mind when he refers to the ‘‘preverbal counting system.’’

Like virtually all researchers in this field, we agree with Gallistel and Gelman that
the verbal numeral list deployed in a count routine is the first explicit representation
of the natural numbers mastered by children growing up in numerate societies.
Indeed, our project derives from the work Gelman and Gallistel initiated almost
thirty years ago: we have studied the acquisition of verbal numerals and of verbal
counting as a means of understanding the ontogenesis of knowledge of the natural
numbers. However, we disagree with Gallistel (and Gelman) on two major points.
First, we believe the evidence shows that the count list is first mastered much as chil-
dren learn to recite the alphabet, that is, without attributing any significance to the
order. Thus, we believe that knowledge of the counting principles is not innate, but
rather constructed as a result of children 0s attempt to make sense of the verbal count
list. Second, although we fully agree that analog magnitudes are part of our innate
cognitive resources and that they eventually provide an important part of the mean-
ing of verbal numerals, we take our data and that of others (e.g., Condry & Spelke,
in press) to convincingly show that knowledge of the verbal counting principles is not
constructed out of analog magnitudes but out of representations provided by a sys-
tem we call ‘‘enriched parallel individuation.’’ In rejecting a role of the analog mag-
nitude system in the early development of knowledge of the meaning of numerals, we
stand in stark opposition to Gallistel’s (and Gelman’s) theory of the acquisition of
verbal counting. In what follows, we explain why we disagree with Gallistel, address-
ing his criticisms along the way. But first we clarify the logic of our project, for Gal-
listel’s comments suggest it may not have been clear.

2. The nature of our questions and the logic of our methods

In our view, there are three preverbal systems of discrete quantification, each elic-
ited in different circumstances. Gallistel accepts one of these systems: the analog
magnitude system in which the cardinal value of a set is represented by an analog
symbol that is a linear or logarithmic function of the number of elements in the
set. It is the other two systems and their roles in the development of numerical capac-
ities that are the basis for the disagreements. One of these systems we call ‘‘parallel
individuation’’ (Carey, 2004; Feigenson & Carey, 2003, 2005). The other we call ‘‘set
based quantification’’ (Barner, Thalwitz, Wood, & Carey, 2007; Barner, Wood,
Hauser, & Carey, under review). The goal of our paper was to determine which of
these three systems supports the numerical meanings of verbal numerals at the point
of the child’s earliest mastery of them. Our two most important results were that (1)
children cannot estimate the numerical size of sets beyond 4 without counting until 6
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months after they have become cardinal-principle knowers (i.e., have mastered all of
the counting principles) and (2) errors of application of ‘‘one’’ to ‘‘four’’ in estima-
tion tasks do not show the noise signature of the analog magnitude system. We were
eager to read Gallistel’s thoughts on these data, for we obtained them with tasks and
analyses that were modeled after his excellent studies of the mapping between
numerals and analog magnitudes in adults (Cordes, Gelman, Gallistel, & Whalen,
2001; Whalen, Gallistel, & Gelman, 1999). Thus, we were greatly disappointed that
he did not engage any part of our findings in his commentary, especially since they
undermine the hypothesis he favors.

As Gallistel remarks, the general hypothesis that frames our work is that knowl-
edge of the verbal counting principles can be induced from mappings between indi-
vidual numerals and core number representations. It is with this hypothesis in mind
that we sought to determine which individual numerals are mapped to which prever-
bal number representations in the process of the construction of the verbal counting
principles. But Gallistel misunderstands our project when he states that we equate
knowledge of the meaning of a numeral with knowledge of how it maps to analog
magnitudes. As we explicitly stated in our paper, the logic of our project is just
the opposite. We say:

‘‘(. . .) does not knowledge of the counting principles implicate knowledge of
the mappings between large numerals and analog magnitudes? Not necessarily.
(. . .) it may be possible to know the meaning of a symbol qua symbol in the
count list without knowing its meaning qua symbol mapped onto an analog
magnitude. Thus, there could be a period during which children who can deter-
mine what numeral to apply to a large set of objects (e.g., 10) by counting it,
cannot do so if they are prevented from counting and are thereby forced to rely
on the mapping between large numerals and analog magnitudes.’’

It is for this very reason that we took great pains to make sure that our measure of
children’s knowledge of mappings between numerals and core number representa-
tions was independent from our measure of knowledge of verbal counting; e.g., our
Fast Cards task (Experiment 1) prevented the use of verbal counting so that it would
test knowledge of mappings between numerals and core number representations in
subset-knowers and in cardinal principle-knowers (Subset-knowers have assigned
numerical meaning to only a subset of the numerals in their count list; that is they
are ‘‘one-,’’ ‘‘two-,’’ ‘‘three-,’’ or ‘‘four-’’knowers. Henceforth, we use ‘‘CP-knowers’’
as short for ‘‘cardinal principle-knowers’’). We followed this experimental logic all the
way to the end. Our most important result is that there are children who have knowl-
edge of the counting principles and can count at least up to ‘‘ten’’ but have not
mapped numerals beyond ‘‘four’’ onto analog magnitudes – i.e., CP non-mappers.

Gallistel is right that we did not consider Gelman’s ‘‘structure-mapping’’ proposal
(e.g., Gelman & Lucariello, 2002) in our article. We did not consider it because the
proposal has never spelled out how children note a structural/functional isomorphism
between preverbal counting and verbal counting without already understanding how
verbal counting represents the natural numbers. We would welcome a worked out
proposal, for, as we say below, we are sympathetic to Gelman’s general approach
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to learning. Contrary to Gallistel’s commentary, however, the proposal we do con-
sider in our paper – that the acquisition of individual mappings between numerals
and magnitudes plays a role in the acquisition of the numeral list counting system –
was explicitly endorsed in Gallistel and Gelman (1992). They write: ‘‘Learning to
count involves, in part, learning a mapping from the preverbal numerical magnitudes
to the verbal and written symbols and the inverse mappings from these symbols to the
preverbal magnitudes.’’ (p. 42), and that ‘‘Children assimilate verbal counting
because it maps onto the unconscious preverbal counting process. The count words
map to the preverbal magnitudes.’’ (p. 65). This is a very serious possibility, endorsed
explicitly or implicitly by many people in the field (Dehaene, 1997, 2001; Spelke &
Tsivkin, 2001; Wynn, 1992, 1995). This is why we set out to test this particular version
of the hypothesis that analog magnitudes govern the acquisition of verbal counting.

One related misconception must be countered. Gallistel assumes correctly that we
are testing the whether children learn the meanings of the first 3 or 4 numerals by
mapping them onto the corresponding magnitudes, but suggests that we think this
mapping is the only possible way these numerals could be numerically meaningful.
Quite the contrary, the aim of our project was to determine whether analog magni-
tudes are part of the input to the acquisition of the verbal counting principles, or
whether the counting principles are constructed from different representations of
the meanings of the first four numerals, those delivered by the system of representa-
tion we call ‘‘enriched parallel individuation.’’ We take our results to provide strong
support for the latter hypothesis. This is the view we defend below.

3. Evidence that knowledge of the counting principles is constructed

The most damning problem for Gallistel’s (and Gelman’s) preverbal counting
hypothesis is that the analog magnitude system is not a preverbal counting mecha-
nism. In fact, there is no evidence for any preverbal counting mechanism. Evidence
that non-human animals and human infants represent number is not tantamount to
evidence that they count – for there are many different ways of deriving numerical
information from arrays of individuals. Current evidence indicates that analog mag-
nitudes are not created via an iterative counting process in which each individual
must be counted sequentially. It takes infants no longer to create analog magnitude
representations of 8 items than of 4 items (Wood & Spelke, 2005) or for adults to
create analog magnitude representations of 100 items than of 50 items (Barth, Kanw-
isher, & Spelke, 2003). These results are best explained by models of analog magni-
tude representations in which the cardinal values of sets are created in parallel (e.g.,
Dehaene & Changeux, 1993; Verguts & Fias, 2004) or derived from computations
over variables that can be measured equally quickly for sets of any size (e.g., in a
two-dimensional display, total area occupied by objects and average object area;
see Church and Broadbent (1990) for a relevant model of ‘‘countless’’ enumeration
of sequences of events).

We agree with Gallistel that evidence that children understand the numerical sig-
nificance of counting from the very outset of memorizing a verbal count list would in
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itself be evidence for a preverbal counting system. However, in accord with the con-
clusion that humans are not born with any form of knowledge of the counting prin-
ciples, multiple measures of knowledge of the counting principles have been used in
multiple cultures and have shown that, in all these cultures, at least one year elapses
between the time at which children begin to recite a count list and the time at which
they begin to use it as representation of the natural numbers (Le Corre, Li, Jia, &
Shui, 2003; Le Corre, Van de Walle, Brannon, & Carey, 2006; Sarnecka, Kamens-
kaya, Ogura, Yamana, & Yudovina, in press; Schaeffer, Eggleston, & Scott, 1974).
It is in light of this evidence that we asserted that children’s early counting is a rou-
tine that they learn without grasping its numerical significance. It is also the evidence
that has led most researchers in the field to consider the debate between nativist and
constructivist views of the acquisition of verbal counting to be settled in favor of the
latter (Condry & Spelke, in press; Frye, Braisby, Lowe, Maroudas, & Nicholls, 1989;
Fuson, 1988; Hurford, 1987; Le Corre et al., 2006; Mix, Huttenlocher, & Levine,
2002; Schaeffer et al., 1974; Siegler, 1991; Wynn, 1992).

Gallistel takes strong exception to this characterization of the acquisition of ver-
bal counting, and counters that his and Gelman’s group of investigators have pro-
vided good evidence that children do understand counting from the outset. He
also argues that the studies that failed to support his and Gelman’s hypothesis did
so because the tasks they used to measure knowledge of verbal counting (e.g.,
Wynn’s (1990, 1992) Give a Number task) taxed children’s fragile performance sys-
tems (e.g., knowing when to deploy counting to perform some task, controlling
attention, working memory, and motor plans) to such an extent that they prevented
them from expressing their knowledge of counting. Had these studies used more age-
appropriate tasks (e.g., Gelman’s (1993) What’s on This Card task) they would have
found that children’s counting is numerically meaningful from the beginning.

We disagree with Gallistel’s counter-arguments. First, many studies have shown
that children begin to recite a count list around age 2:0 (Le Corre et al., 2006; Sar-
necka et al., in press; Wynn, 1990, 1992). Most of the studies Gallistel refers to did
not include children who were younger than 3 (Gelman, 1972; Zur & Gelman, 2004),
and those that included 2-year-olds yielded a mixed pattern of success and failure
(Gelman, 1993). Therefore, these studies fall short of providing evidence that verbal
counting is numerically meaningful from the very beginning. Most importantly, Le
Corre et al. (2006) explicitly tested whether children’s long failure to use their count
list as a representation of number should be attributed to a performance deficit
rather than to their lack of knowledge of the counting principles. They tested the
same children on a demanding task (i.e., Wynn’s Give a Number, the task we used
in Experiment 1 to distinguish ‘‘subset-knowers’’ from ‘‘cardinal principle-knowers’’)
and on easier tasks (e.g., Gelman’s What’s on This Card, the task we used in Exper-
iment 2). We found that children who were classified as ‘‘n’’-knowers on the basis of
Give a Number were also classified as ‘‘n’’-knowers on the basis of What’s on This
Card; e.g., ‘‘one’’-knowers – children who have learned an exact meaning for ‘‘one’’
but not for any other numeral in their count list – were classified as such on both
tasks. More generally, we found that children who failed to show that they under-
stood counting on Give a Number (i.e., children who were ‘‘subset-knowers’’) also:
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(1) were unable to fix a set when they were told that they had given the wrong num-
ber of objects and were asked to change the number they had given to make it right;
(2) almost never used the last numeral of their count to refer to the number of stick-
ers in a set they had just counted correctly (in the What’s on This Card task); and (3)
agreed that a puppet that had counted five elephants out loud as it slowly put them
in a bin one at a time had just put ‘‘six elephants’’ in the bin. The only children who
did not make these mistakes were the ones who had been classified as CP-knowers on
the basis of their performance on Give a Number. Given that these results show the
same knowledge across tasks that make strikingly different processing demands on
the child, the qualitative differences in the counting behavior of subset-knowers
and cardinal principle-knowers strongly suggest that what ultimately separates these
groups is knowledge of the counting principles (see Wynn (1992) for further evidence
of the consistency of children’s knowledge of numerals and counting across tasks
that make different processing demands).

Sarnecka and Carey (under review) provide additional evidence that cardinal
principle-knowers differ from subset-knowers precisely in understanding how count-
ing implements the successor function. Only cardinal principle-knowers understand
the implications of going up one item in the count list for the direction and unit of
change for the cardinal value of the set represented by a given numeral. The tasks
used by Sarnecka and Carey were arithmetic tasks, and so belie Gallistel’s claim that
arithmetic tasks elicit evidence of understanding the cardinal principle by children
otherwise classified as subset-knowers.

4. Evidence that analog magnitudes are not the source of knowledge of the counting
principles: The dialectic of Le Corre and Carey (2007)

Our results are problematic for the hypothesis that analog magnitudes ground
learning the meanings of verbal numerals and learning to count, whether the pro-
posal is that they do so via mappings to individual numerals or via some structural
mapping. First, our data show that mappings between individual numerals and ana-
log magnitudes are not constructed until well after children have induced the count-
ing principles; we refer readers to our paper for the arguments that support this
conclusion. Incidentally, if Gelman and Gallistel are right that the counting princi-
ples are understood earlier than indicated by the tasks that pattern with Give a num-
ber, then verbal numerals are integrated with analog magnitudes even later relative
to learning how counting represents number than we have claimed in our paper.
Thus, on either view of when children master the counting principles, the mappings
of numerals to analog magnitudes cannot be their source. Second, although our
study was not designed with the structure-mapping version of the preverbal counting
hypothesis in mind, our data also militate against this hypothesis. It is hard to imag-
ine any version of this proposal that would not involve children recognizing that
numerals later in the count list represent greater numbers (as specified by analog
magnitudes; see Wynn (1992) for a proposal to that effect). This is precisely what
subset-knowers and CP non-mappers fail to demonstrate. When asked to estimate
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the number of individuals in a set, they do not produce larger numerals for sets of 10
than for sets of 5 (see also Condry & Spelke, in press).

In Le Corre and Carey, we suggest that a system we call ‘‘enriched parallel individ-
uation’’ is the most likely cognitive precursor of knowledge of the verbal counting prin-
ciples. Gallistel argues that there are two serious conceptual flaws in the cognitive
architecture we are proposing: it does not have representations of sets, and, for that
reason as well as others, it does not have numerical content. He also takes issue with
our enriched version of the parallel individuation system. In order to answer Gallistel’s
concerns, we now describe the systems of quantification we believe are available to
infants (parallel individuation and set-based quantification), and then defend the view
that, allowing a relatively minor enrichment, parallel individuation provides the cog-
nitive architecture that supports the earliest meanings of the first four numerals, and
that thereby provides the conceptual planks for the construction of verbal counting.

5. Representing sets

Parallel individuation is indeed the system of representation studied by Pylyshyn
and others in their work on attentional indices (Pylyshyn & Storm, 1998; Scholl &
Pylyshyn, 1999) and by Kahneman, Treisman, Luck and many others in their work
on object-based attention and visual short-term memory (Cowan, 2001; Kahneman,
Treisman, & Gibbs, 1992; Vogel, Woodman, & Luck, 2001). In parallel individua-
tion, the individuals in small sets are represented in working memory by a set of sym-
bols, one symbol for each individual in the set. This system of representation has a
sharp capacity limit of 3 or 4 items. Thus, the representation of a set of 3 crackers
might be {cracker, cracker, cracker} or {hhh}, depending upon whether the sym-
bols for crackers are iconic or discrete. Gallistel appears to be unaware of the work
of Feigenson and her colleagues (Feigenson & Carey, 2003, 2005; Feigenson et al.,
2002; Feigenson & Halberda, 2004) that shows that preverbal infants can make mod-
els of at least two sets of individuals, each subject to the set-size limit on parallel indi-
viduation, and hold both in working memory at once. This work shows that the
adult literature cited above does not fully describe the system of parallel individua-
tion shared by infants and adults.

The system we call ‘‘set-based quantification’’ distinguishes individuals from sets
of multiple individuals with no limit on the size of the sets represented, and supports
quantification over these sets in terms of the contrasts explicitly represented in nat-
ural language systems of quantification (e.g., singular/plural, some, all, more). Much
less work characterizes preverbal quantification over sets. What has been done shows
that under some circumstances both human infants and rhesus macaques represent a
singular/plural distinction (Barner et al., 2007; Barner et al., under review). It also
shows that before their second birthday, English-learning toddlers have begun to
explicitly quantify over sets with determiners and quantifiers like ‘‘some,’’ and
‘‘a.’’ Contrary to Gallistel’s remark when he worries about wading into deep linguis-
tic territory, ‘‘a’’ has numerical content as well as discourse content. It introduces one
new individual into the discourse, in contrast to some; it is for that reason that, in
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some languages the morpheme for the indefinite singular determiner is identical to
the numeral for one (e.g., ‘‘un’’ in French). Therefore, mastery of ‘‘a’’ does show that
set-based quantification is available right around the time when children first learn
‘‘one.’’

We agree with Gallistel’s clear arguments that there are no representations of
number without some capacity to attend to and index sets. There is no denying that
cardinal values are a property of sets. However, we disagree that the parallel individ-
uation system cannot track sets. We reject this conclusion for the same reason we
would disagree that the computations in the analog magnitude system are not car-
ried out over sets – a conclusion that also follows from the logic of Gallistel’s argu-
ment. Indeed, no model of the analog magnitude system, not even Gallistel’s,
includes explicit symbols for sets. We reject both conclusions because the represen-
tations in these systems would be useless if they were not somehow connected to rep-
resentations of sets. For example, analog magnitudes can enter into computations of
numerical order (e.g., Brannon, 2002; Brannon & Terrace, 1998, 2000). For the
result of these computations to have any use in the world, the analog magnitude sys-
tem must somehow keep track of the sets associated with each magnitude in the com-
parison. Knowing that approximately 8 is more than approximately 5 would be
useless if the organism who computed this result could not somehow connect one
magnitude with, say, this set of 8 raisins over here and the other with that set of 5
raisins over there. In fact, Gallistel’s very point is that, without some notion of
set, these computations could not even get off the ground because the sets, among
other things, determine what is to be compared to what. For this reason, evidence
that infants can use parallel individuation to choose a set of three crackers over a
set of two crackers (Feigenson et al., 2002) implies that the parallel individuation sys-
tem somehow keeps track of which set is cracker, cracker, cracker and which is
cracker, cracker. Likewise, evidence that infants can use set-based quantification
to distinguish a collection of more than 1 cracker from 1 cracker (Barner et al.,
2007) implies that the system keeps track of which set is singular and which is plural.

Thus, when we include braces in our notations for the symbols in parallel individ-
uation, we are not imposing representations only available to symbolically sophisti-
cated adults onto the infant mind. To be clear, neither are we taking a stand on
whether the child has an explicit symbol ‘‘{}’’ with the content ‘‘set.’’ Rather, we
mean only to capture the set indexing and tracking capacities needed by parallel indi-
viduation, set-based quantification and analog magnitudes to support the numerical
capacities they have been shown to support.

6. The numerical content of parallel individuation

While implicit or explicit representations of sets are necessary to create represen-
tations of number, they are not sufficient. Thus, having explained why experimental
evidence warrants the inclusion of symbols for sets in the machinery available to par-
allel individuation and set-based quantification, we now turn to a discussion of how
it represents number.
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As Gallistel (1990) pointed out in his insightful discussion of mental representa-
tions, the content of a mental symbol is not only given by its extension but also by
the computations it enters into. Thus, while it is true that the parallel individuation
system does not have symbols for numbers, and may not have explicit symbols for sets
– it may only have explicit symbols for individuals – it has numerical content because
the computations its symbols enter into include numerical ones. First, representations
of individuals are sensitive to numerical identity, creating new symbols when there are
spatiotemporal or featural cues that a newly encountered individual is numerically
distinct from an individual already represented in the model. The net result is that
there is one symbol for each individual in a represented set (so long as the set-size limit
on parallel individuation is not exceeded). Thus, the models maintain 1–1 correspon-
dence between symbols in the head and individuals in the set.

Gallistel wonders whether we are taking the computation of numerical identity as
evidence that parallel individuation has numerical content simply because we are
confusing ‘‘identity’’ and ‘‘equality.’’ Quite the contrary, it is he who does not seem
to appreciate that the notion of numerical identity can be used to construct represen-
tations of the natural numbers. For example, in first order logic, one way of express-
ing the proposition ‘‘there are two individuals’’ is ‘‘9x9yðx 6¼ yÞ ^ 8
zðz ¼ x _ z ¼ yÞ.’’ The ‘‘=’’ and ‘‘„’’ in this formula refer to numerical identity. That
is, the formula requires that x be numerically distinct from y (i.e., x and y are differ-
ent individuals) and that any other individual be numerically identical with x or y
(i.e., there are no individuals other than x and y). This formula only applies to sets
of exactly two individuals so, in this sense, it is a representation of two. Therefore,
the claim that the system of parallel individuation has implicit numerical content is
no more confused than the claim that the language of first order logic can be used to
construct representations of the natural numbers.

In addition to tracking numerical identity, the parallel individuation system sup-
ports computations of one-to-one correspondence (among other quantitative com-
putations), allowing infants to compute whether two sets are numerically
equivalent or whether one has more (Feigenson, 2005; Feigenson & Carey, 2003,
2005). These computations also contribute to the numerical content of the parallel
individuation system. Notice that the verbal numerals also depend on the computa-
tion of one-to-one correspondence to function as symbols for the natural numbers.
Thus, Gallistel’s snide remark that one might as well assign numerical content to an
internal combustion machine is off the mark in two respects. Contents are assigned
only to representations, not to entities in the world. And if computations of one-to-
one correspondence can play a role in imparting numerical content to the verbal
numerals, then they can equally do so for symbols in parallel individuation.

7. Enriched parallel individuation

Thus far we have argued that the infant system of parallel individuation is richer
than Gallistel supposes, going beyond the attentional and object tracking mecha-
nisms studied by Pylyshyn, Treisman, Luck and others to include working memory
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models of multiple sets, over which a variety of quantitative computations are
defined. Yet, the representations of parallel individuation are still not sufficient to
support the meanings of numerals. The problem is that the representations in this
system, being working memory models of small sets, are too temporary to provide
word meanings. This is why we proposed ‘‘enriched parallel individuation’’ as a
plausible amendment to the parallel individuation system.

In enriched parallel individuation children create long term memory represents of
small sets: {i}, {j k}, {l, m, n} or {a, b, c, d} where j, l, b, etc. are symbols for abstract
or specific individuals, gathered into sets of 1, 2, 3 and 4. What makes these repre-
sentations of number is that each is mapped onto the relevant numeral and deployed
on the basis of one-to-one correspondence; e.g., {i} is mapped onto the numeral
‘‘one’’ and ‘‘one’’ is applied to sets represented in working memory models that
can be put into 1–1 correspondence with {i}. Similarly, to support the meaning of
‘‘two,’’ children create a long term memory model – e.g. {j, k} – map this to the
numeral ‘‘two’’ and apply it to sets in working memory that can be put in 1–1 cor-
respondence with this long term memory model. Again, notice that what gives these
representations numerical content is their computational role; Gallistel is quite cor-
rect that {j, k} is itself just a representation of a set of an individual and another indi-
vidual. Although this system is enriched relative to parallel individuation because its
symbols can be stored in long-term memory, it does not require the creation of new
representational content. It only uses computational capacities shown to be part of
infant parallel individuation – the capacity to create models of sets using parallel
individuation and the capacity to compare sets on the basis of 1–1 correspondence.

Gallistel wonders how we motivate a limit of 4 in this scheme. As he says, there is
no motivated limit on the sizes of sets held in long-term memory. One could reel off
the names of her 6 siblings from a long term memory representation, in spite of
showing a strict limit of 3 items in tasks measuring visual working memory capacity.
Thus, the limit on the enriched parallel individuation system cannot come from lim-
its on long-term memory. What does limit the system is the fact that the application
of a numeral to some attended set requires holding the attended set in working mem-
ory, so that it can be compared against the long term memory models that determine
which numeral (if any) applies to it. Since these working memory models are limited
to sets of 4, enriched parallel individuation can only support the application of
‘‘one’’ to ‘‘four.’’ Notice that this explains why children can only assign numerical
meaning to ‘‘one’’ to ‘‘four’’ prior to acquiring the counting principles. For example,
a 2-year-old who saw (and heard) his mother refer to a set of five apples as ‘‘five
apples’’ would not be able to learn much about the meaning of ‘‘five’’ because he
cannot create a working memory model of the set that he could then store as a model
for ‘‘five’’ in long-term memory.

This proposal has several advantages. First, enriched parallel individuation
makes use of computational devices firmly demonstrated to be in the repertoire
of preverbal infants. Second, the enriched parallel individuation system provides
the very representations needed to support bootstrapping proposals that have
been offered by several researchers to account for how the counting principles
are constructed (Carey, 2004; Hurford, 1987; Klahr & Wallace, 1976). Last,
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and most important, the enriched parallel individuation hypothesis provides the
best explanation of our data. To repeat, we find that the only numerals that
can acquire numerical meanings via mappings to enriched parallel individuation –
i.e. ‘‘one’’ through ‘‘four’’ – are the very ones that are learned prior to the acqui-
sition of verbal counting. Based on a review of historical and cross-cultural lin-
guistic data, Hurford (1987) arrives at the same conclusion regarding the
historical origins of verbal counting; i.e., he argues that the first four numerals,
and only these numerals existed as quantifiers prior to the existence of a count
list. Moreover, we also find that the noise in estimating sets of 1–4 elements, both
by subset-knowers and young cardinal principle-knowers, implicates parallel indi-
viduation rather than counting or analog magnitudes as underlying the meanings
of the numerals deployed in our estimation tasks.

8. How the counting principles are constructed in childhood

We would like to end by commenting that our view of the learning process that
builds the counting principles is an example of what Gelman and Lucariello
(2002) call ‘‘structure mapping.’’ Indeed, according to our bootstrapping proposal,
children discover a structural similarity between two very different representations
of linear order: next in a list of symbols, and next in a series of sets related by +1.
This supports the induction of the general principle, ‘‘for any set whose cardinal
value n is represented by numeral ‘‘n,’’ the next numeral in the list represents the car-
dinal value of n + 1.’’ Sarnecka and Carey (under review) provide evidence that
knowledge of this generalization divides subset-knowers and cardinal principle-
knowers. Thus, we endorse Gelman and Lucariello’s basic insight concerning the
structure of the learning mechanism that supports the acquisition of verbal counting,
although we differ from them in what we take its input to be.

9. Conclusion

We take our enriched parallel individuation hypothesis to survive Gallistel’s crit-
icisms, and to provide the best account of the data concerning the acquisition of ver-
bal counting. We would welcome a worked out proposal through which analog
magnitude representations could support the acquisition of counting, while also
accounting for all that is known about early numeral learning. In the absence of such
a proposal, the bootstrapping accounts formulated in terms of representations akin
to enriched parallel individuation are the only game in town.
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