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Children learn to count, and even learn the cardinal meanings of the first three or four verbal numerals
(‘‘one” through ‘‘three” or ‘‘four”), before they master the numerical significance of counting. If so, it fol-
lows that the cardinal meanings of those first few numerals cannot be derived, initially, from their place
in the count list and the counting routine. What non-verbal representations, then, support the cardinal
meanings of verbal numerals before children have mastered how counting does so? Four experiments
addressed the commonly adopted assumption that in the earliest period of learning the meanings of
number words, children map verbal numerals to regions of the analog number system (ANS), a system
of representation with numerical content that is widely attested in animals and in human infants.
Experiment 1 confirmed that children who know what ‘‘three” means, but who do not yet know what
‘‘four” means, and do not yet know how counting represents number, can be easily taught the meaning
of ‘‘four,” if they are trained to indicate sets of four when they are paired with a series of sets that contrast
numerically with four. If children learn ‘‘four” by mapping the word to an ANS representation of sets of
four, and if such ANS value-to-word mappings underlie the meanings of other known numerals early in
development, then analogous teaching should enable young children to establish a ANS value-to-word
mapping for between ‘‘ten” and sets of 10 as specified by the ANS. Furthermore, the ease of learning
should be a function of the ratio of the number of individuals in the comparison set to 10. Three further
experiments tested these hypotheses by attempting to teach young Cardinal Principle-knowers the
meaning of the word ‘‘ten,” under the same training conditions ‘‘three-‘‘knowers are easily taught the
meaning of ‘‘four”. The children learned which picture in each training pair had ‘‘ten.” However, test trials
with novel animals and spatial configurations showed that they had failed to learn what set sizes should
be labeled ‘‘ten”, even when, after training, they were asked to indicate a set of 10 vs. a set of 20 or 30
(well within the ratio sensitivity of the ANS even early in infancy). Furthermore, there was no effect of
ratio on success during test trials. These data provide new evidence that ANS value-to-word mappings
do not underlie the meanings of number words early in development. We discuss what other non-
verbal representations might do so, and discuss other ways the ANS may support learning how counting
represents number.

� 2017 Published by Elsevier B.V.
1. Introduction

Mathematics does not come for free by virtue of being born a
human being. Historically, the cultural construction of mathemat-
ics began with arithmetic (Dantzig, 1967; Ifrah, 1985). As the foun-
dational concepts in arithmetic are the positive integers, a good
place to start in understanding the ontogenesis of mathematics is
to account for the ontogenetic origin of representations of the pos-
itive integers. In the first systematic attempt at such an account,
Piaget (1952) argued that integer representations must await the
logical developments of concrete operational thought. He offered
non-conservation of number by preoperational children as evi-
dence that concepts of integers do not become available until age
5 or 6.

In the first major re-evaluation of Piaget’s position, Gelman and
Gallistel (1978) countered that verbal counting, when deployed in
accordance with the counting principles of stable order, 1–1 corre-
spondence and the cardinality principle, constitutes a representa-
tion of at least a finite subset of the positive integers. Gelman

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2017.06.022&domain=pdf
http://dx.doi.org/10.1016/j.cognition.2017.06.022
mailto:scarey@wjh.harvard.edu
http://dx.doi.org/10.1016/j.cognition.2017.06.022
http://www.sciencedirect.com/science/journal/00100277
http://www.elsevier.com/locate/COGNIT


244 S. Carey et al. / Cognition 168 (2017) 243–255
and Gallistel provided evidence for mastery of these three counting
principles by young 2-year-olds, and proposed that learning to
count is supported by an innate ‘‘numeron” list, used in accord
with the counting principles to represent cardinal number. Learn-
ing to count in a natural language, according to this hypothesis,
requires only that the child identify what ordered list of words
should be mapped to the innate numeron list. Thus, Gelman and
Gallistel, in contrast to Piaget, argued that the positive integers
are innate.

Subsequent work has undermined the empirical support for an
innate count list. Two year olds indeed know the count routine,
and deploy it in stable order and in 1–1 correspondence to the indi-
viduals counted, but much evidence suggests they do not know
that the last word reached in a count represents the cardinal value
of the set (the cardinal principle) until months or even years later
(Fuson, 1988; Le Corre, Van de Walle, Brannon, & Carey, 2006; Mix,
Huttenlocher, & Levine, 2002; Sarnecka & Lee, 2009; Siegler, 1991;
Wynn, 1990; Wynn, 1992; see Carey, 2009 for review). Rather, they
assign numerical meaning to the verbal numerals in a piecemeal
way, first learning what ‘‘one” means (i.e., become ‘‘one”-
knowers), then some 6 months later become ‘‘two”-knowers, then
‘‘three”-knowers, and then ‘‘four”-knowers. Children who know
only the meanings of some of the numerals between ‘‘one” and
‘‘four” are designated ‘‘subset-knowers,” for they know the cardinal
meanings of only a subset of the numerals they can recite. Middle-
class, English learning, children become cardinal principle-
knowers (CP-knowers) around age 3 ½ to 4 ½, and can then use
the count routine to assign a cardinal value to any words in their
known and practiced count list (Gunderson, Spaepen, & Levine
2015; Le Corre & Carey, 2007; Sarnecka & Lee, 2009).

If we accept that children in the subset-knower period do not
know the significance of counting, it follows the cardinal content
of the words ‘‘one” through ‘‘four” in the subset-knower cannot
be provided by their role in a counting procedure constrained by
the counting principles (e.g., the numeral ‘‘four” cannot receive
its meaning by virtue of being the fourth word in the count list).
This conclusion raises an important question: if the meaning of
the first verbal numerals is not provided by their role in counting,
how do they get their numerical content?

One likely source of number word meanings is antecedently
available non-verbal representations of number. It is very difficult
to see how meanings for number words might be constructed
entirely from representations with no numerical content. Indeed,
non-human animals, human infants, children, and adults share
two quite different evolutionarily ancient systems of non-verbal
representations with numerical content: (1) the analog, or approx-
imate, number system (ANS); and (2) parallel individuation (PI), a
structure in which working memory models of small sets of indi-
viduals are constructed with one symbol in the model for each
individual in the set. These are the only two systems of nonverbal
representations with numerical content for which there is evi-
dence in non-human animals and very young human infants (see
Carey, 2009; Feigenson, Dehaene, & Spelke, 2004, for review).

The ANS consists of analog representations that are a linear or
logarithmic function of the cardinal values of the set represented.
These representations express cardinal values only approximately.
One signature of the ANS is that magnitudes are discriminated one
from another on the basis of their ratios; thus, discriminability
accords with Weber’s law and exhibits scalar variability (the stan-
dard deviation of multiple estimates of a the number of items in a
set is a linear function of that set’s cardinal value). ANS represen-
tations support many different arithmetical computations, includ-
ing numerical comparison, addition, subtraction, multiplication,
and division (see Carey, 2009; Dehaene, 2011; Gallistel, 1990, for
review).
PI, a second preverbal system with numerical content, consists
of working memory representations of small sets of individuals.
The symbols in this system represent individuals (e.g., a set of
three crackers is represented CRACKER, CRACKER, CRACKER, prob-
ably iconically for each cracker). Unlike the ANS, the PI working
memory system is not a dedicated number representation system,
nor are there any symbols that represent cardinal values in these
models; there are only symbols for individuals, held in working
memory. The numerical content in PI is implicit, carried by the
computations that ensure that the symbols in a working memory
model stand in one-to-one correspondence with the individuals
in the sets modeled, and the computations that allow models to
be compared on the basis of one-to-one correspondence to deter-
mine numerical equivalence. There is a strict upper limit to capac-
ity of working memory, a function of the number of encoded
individuals, the complexity of the representations of individuals,
and the complexity of the computations to which the models serve
as input (Brady & Alvarez, 2015; Xu & Chun, 2009; Zosh &
Feigenson, 2009). For twelve-month-olds, this limit on working
memory representations of single sets is three distinct, perceptu-
ally simple individuals (Feigenson & Carey, 2003; Ross-Sheehy,
Oakes, & Luck, 2003); with development this capacity expands a
bit, reaching a limit of four or five in older preschoolers (Starkey
& Cooper, 1995).

Although researchers for the most part have abandoned the
hypothesis of an innate numeron list and counting routine, almost
all agree with Gelman and Gallistel’s crucial insight that the count
list, deployed in accord with the counting principles, constitutes a
representation of at least a subset of the positive integers. Further-
more, neither preverbal representational system, on its own, is
capable of expressing integers: the ANS because it only approxi-
mates cardinal values and does not naturally implement the suc-
cessor function, and PI because it contains no symbols for
cardinal values and has a capacity limit on the size of sets it can
represent. Thus, much work in the field concerns the process
through which children learn the cardinal principle, as the count-
ing principles ensure that verbal numerals do represent integers.
All theories posit innate numerical resources in addition to PI and
the ANS; examples include an innate successor function (Leslie,
Gelman, & Gallistel, 2007); an innate tally system based on the
iteration of 1 (Leslie, Gelman, & Gallistel, 2008); and quantification
in natural language morpho-syntax and semantics (Almoammer
et al., 2013; Barner, Libenson, Cheung, & Takasaki, 2009; Bloom &
Wynn, 1997; Le Corre, Li, Huang, Jia, & Carey, 2016; Sarnecka,
Kamenskaya, Yamana, Ogura, & Yudovina, 2007). All suggest that
some process of combining or aligning antecedently independent
representational systems is likely involved (e.g., Carey, 2009;
Leslie et al., 2007, 2008; Spelke, 2003). In order to evaluate these
different proposals, we need to know what non-verbal representa-
tions underlie children’s meanings of the first number words, for
those meanings will play a central role in the construction of expli-
cit representations of positive integers.

Here we assume that the two well attested systems of represen-
tation are the only preverbal representations with numerical con-
tent available to underlie the meanings of the words ‘‘one”
through ‘‘four” in the subset-knower stage. This is because there
is no evidence for an innate successor function or an innate tally
system based on the iteration of 1. Our question is whether one
system, or both, do so, and how. Several writers presuppose
(Bugden & Ansari, 2011; Odic, Le Corre, & Halberda, 2015;
Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013) and/or explicitly
argue (Dehaene, 2009; Gallistel & Gelman, 2000; Piazza, 2010;
Starr, Libertus, & Brannon, 2013; Verguts & Fias, 2004; Wagner &
Johnson, 2011) that the ANS provides such meanings, and it does
so though the creation of mappings of each number word ‘‘one”
through ‘‘four” with an ANS region (as ANS values can be specified



Fig. 1. Figure illustrating hypothesized bidirectional verbal numeral-ANS value
mapping. From Gallistel and Gelman (2000).
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at different levels of precision). We call this the ‘‘ANS value-to-
word mapping” hypothesis. Fig. 1, taken from Gallistel and
Gelman (2000) illustrates this assumption. The top part of the fig-
ure illustrates the operation of the non-verbal ANS; the bottom
illustrates a bidirectional mapping between the first 8 verbal
numerals and ANS values that is the starting point for Gallistel
and Gelman’s (2000) proposal for the transition to representations
of integers.

Rats can learn rules about quantities formulated in terms of ANS
values (e.g., press the left bar 25 times, and then switch to the right
bar; Platt & Johnson, 1971). Furthermore, Platt and Johnson pro-
vide good evidence the ANS provides the numerical content in
the rule, as the rats’ number presses exhibit scalar variability. Thus,
it is certainly possible that ANS values alone can support the mean-
ing of the word ‘‘four,” similarly providing the numerical content to
generalizations such as ‘‘sets of 4 are called ‘‘four.” Beyond possi-
ble, this proposal has considerable plausibility. Adults have
mapped at least some verbal and Arabic numerals to specific ANS
values (e.g., Dehaene, 2011; Izard & Dehaene, 2008; Moyer &
Landauer, 1967; Sullivan & Barner, 2012; Whalen, Gallistel, &
Gelman, 1999). The ANS is an evolved system of representation
with numerical content; clearly, integrating culturally constructed
explicit representations with ANS representations is one important
way that verbal and written representations gain numerical
meaning.

However, the above studies do not speak to when in develop-
ment a mapping between some verbal numerals and ANS values
is constructed, nor do they establish that such a mapping consti-
tutes the meaning of the verbal numerals at any point in develop-
ment. In spite of the plausibility of the hypotheses that mappings
between the ANS and verbal numerals play an important role in
supporting the meanings of number words from the beginning of
learning, as well as in the induction of the counting principles, Le
Corre and Carey (2007) argued on logical grounds that these
hypotheses are likely to be wrong. First off, the meanings of the
numerals ‘‘one” through ‘‘four” in the subset-knower period must
be able to support the transition to CP-knower, during which chil-
dren connect the counting routine with cardinal meanings for
number words above 4. The ANS does not naturally support the
induction of the counting principles because it does not contain a
representation of exactly one. Furthermore, within the ANS, quan-
tities are compared by their ratios rather than their absolute differ-
ences, and adjacent cardinal values beyond 8 or 9 cannot even be
discriminated. Thus, the numerical representations of the ANS
obscure rather than facilitate the use of counting to implement
the successor function, and implementing the successor function
is necessary for counting to support integer meanings for verbal
numerals.

Le Corre and Carey (2007) also provided empirical evidence that
undermined the hypothesis that ANS values form the basis of
numeral meanings that scaffold the transition to CP-knower. Asked
to estimate the number of dots in visual arrays without counting,
all subset-knowers and many young CP-knowers showed no evi-
dence for any such mappings to numerals above four. When these
children’s verbal estimates of cardinal values were plotted as a
function of the presented set sizes in the range of 6–10, the slope
was 0. Providing the same estimates for sets of 10 as for sets of 6
suggests that they had not mapped ‘‘ten” and ‘‘six” to ANS repre-
sentations of approximately 10 and 6. Le Corre and Carey (2007)
concluded that these mappings could play no role in the transition
to CP-knower, since they observed a six-month age gap between
CP-knowers who had made such mappings and younger CP-
knowers who had not yet done so. Subsequent studies have shown
that some subset-knowers and young CP-knowers do have positive
slopes in their functions between set-sizes and numerical estima-
tions over the whole range of 1 through 10 (Cheung, Slusser, &
Shusterman, 2016; Gunderson et al., 2015; Odic et al., 2015); how-
ever, not all subset-knowers or even young CP-knowers do
(Gunderson et al., 2015; Le Corre & Carey, 2007). Thus, whatever
kind of mapping between the ANS and verbal numerals supports
this function is not necessary for the transition to CP-knower. Fur-
thermore, no study has found a linear mapping over the whole
range of 1 – 10 in the subset-knower stage, such that a bidirectional
ANS-to-number-word mapping up to 10 could possibly facilitate
the CP transition.

Still, many subset-knowers and all young CP-knowers do have
linear mapping between set sizes and verbal numerals in the range
of ‘‘one” through ‘‘four.” In principle this could reflect a mapping
between words and ANS values for these words that are learned
in the subset-knower phase. Indeed, what alternative is there? In
the next few paragraphs, we lay out an alternative to the ANS for
the initial meanings of the first number words—enriched parallel
individuation. The arguments that follow are meant only to make
the enriched PI proposal plausible, not necessarily provide con-
vincing evidence for it. The studies in this paper then explicitly test
predictions that should hold if the ANS underlies the initial mean-
ings of numerals ‘‘one” to ‘‘four.”

Parallel individuation operates over the small set sizes that are
lexicalized in the subset-knower period, but does not contain sym-
bols for cardinal values of those sets. Rather, as mentioned above,
its numerical content is implicit. Even more importantly, the repre-
sentations in the PI system are working memory models of imme-
diately present (although possibly occluded) sets; they are not long
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term memory representations that could underlie the meanings of
words. In response to these properties of the PI system, Le Corre
and Carey (2007; also Carey, 2009) proposed that PI representa-
tions would need to be enriched to support the meanings of the
first four numerals, and could be as follows: During the subset-
knower stage, children could create long term memory representa-
tions of a particular set consisting of a single individuals (e.g., {me}
or {i}), a particular pair of individuals (e.g., {Mommy, Daddy} or {j,
k}), a particular tripleton ({these three fingers} or {m,n,o}), and a
particular quadrupleton (e.g., {Mommy, Daddy, Bobby, me} or {a,
b,c,d}). These long termmemorymodels are mapped to the number
words ‘‘one” through ‘‘four”, respectively, and are deployed accord-
ing to a procedure that determines the number word that applies
to an attended set by finding which of those long term memory
models stands in 1–1 correspondence to it. Such a representational
system makes use of no numerical content or computations not
attested in PI working memory models, but is enriched by long
term memory models. Upon hearing this idea explained in a class,
a colleague reported that for a couple of months, his 3-year-old
daughter always commented on sets of three thus: ‘‘there are three
kittens, mommy, daddy, me, three;” ‘‘Look, three cement mixers,
mommy, daddy, me, three.”

One suggestive source of evidence that enriched parallel indi-
viduation might actually underlie the meanings of the first few
verbal numerals is linguistic. Kayne (2016) summarizes linguistic
evidence that ‘‘one book” means ‘‘a single book,” that ‘‘two books”
means ‘‘two (book and book)”, ‘‘three books” means ‘‘three (book
and book and book)” and ‘‘four books” means ‘‘four (book and book
and book and book).” Kayne presents evidence that this expansion
of the plural in terms of PI representations no longer occurs with
numerals higher than four. Relatedly, the morphology of the first
numerals sometimes reflects the long term memory models of
enriched parallel individuation (e.g., in Daw, ‘‘one” is lexicalized
with the same word that means ‘‘unity”, ‘‘two” is lexicalized with
a compound word that means ‘‘eye-quantity” and ‘‘three” with a
compound that means ‘‘rubber tree seed quantity;” Barner, 2017).

Le Corre and Carey (2007) commented that the enriched PI pro-
posal predicts that the subset-knower period would be restricted
to ‘‘one” through ‘‘four” alone, followed by a discontinuity above
‘‘four.” However, many have pointed out that the observed discon-
tinuity can be accommodated by the ANS value to number word
mapping hypothesis as well, on the grounds that the ratio sensitiv-
ity of young children’s ANS is 3:4, at best, making it difficult for the
ANS to discriminate the values that differentiate the meanings of
numerals above five (e.g., Dehaene, 2009). In addition, the fre-
quency of small number words in cardinal contexts in input to tod-
dlers is vastly greater for the numerals ‘‘one” through ‘‘four” than
for ‘‘five” and higher (as recently verified by Le Corre et al., 2016,
in a corpus analysis of parental speech to toddlers). Ramscar,
Dye, Popick, and O’Donnell-McCarthy (2011) showed that these
two factors (greater frequency of lower numerals, worse discrimi-
nation among higher numbers) together predict seeming disconti-
nuity in the ease of learning the meanings of the smaller numerals,
on the one hand, and those of the higher numerals, on the other,
with a discontinuity at 4. Thus, there is a need for additional evi-
dence in order to adjudicate between the hypotheses that the
ANS or enriched PI (or some other alternative representational
scheme) is more likely to support the meanings of verbal numerals,
before the numerals’ place in the count routine can do so.

The present studies are designed to straightforwardly test the
ANS value-verbal numeral mapping hypothesis concerning the
meanings of verbal numerals prior to the CP induction, and the
hypothesis that such mappings play a necessary role in that induc-
tion. If so, then young CP-knowers should have an over-hypothesis
that any verbal numeral expresses an ANS value. Over-hypotheses
about word meanings are broad hypotheses or constraints about
the properties of the meaning of a word that influence the induc-
tion of word meanings. Young children learn over-hypotheses con-
cerning the meanings of new count nouns or newmass nouns, such
that they can learn the meanings on just one or two encounters
(Soja, Carey, & Spelke, 1991; Yu & Smith, 2007). Such an over-
hypothesis should make it possible to teach children a new map-
ping between a relatively infrequent number word and an ANS
value, so long as that value is contrasted with other ANS values dif-
fering by ratios that vastly exceed the resolution of the ANS.

In support of this prediction, Huang, Spelke, and Snedeker
(2010) taught ‘‘three”-knowers the meaning of the word ‘‘four”
from just a few pairings of ‘‘four” with sets of 4, when those sets
of 4 were paired with sets clearly distinguished from 4 by the
ANS. It follows that, if the transition from subset- to CP-knower
involves mapping verbal numerals higher than 4 to regions of the
ANS, then it should be possible to teach a young CP-knower an
association between the word ‘‘ten” and the relevant region of
the ANS representation, given unambiguous input such as that in
Huang et al. Specifically, young CP-knowers, in possession of the
relevant over-hypothesis, should easily be able to learn what
ANS value ‘‘ten” expresses, if the pairing of ‘‘ten” with sets of 10
is contrasted with other set sizes that differ from 10 by the same
ratios that the contrast set sizes in Huang et al. differed from 4.

We present a set of experiments that test this prediction. By age
3 ½, the ANS system of children can discriminate sets that differ by
a ratio of 3:4 (Halberda & Feigenson, 2008), so training sets of 10
contrasted with sets of 5, 7, 15, 20, and 30 all fall within the child’s
ANS discrimination capacity. Furthermore, if ANS values are the
sole source of meaning for verbal numerals during the subset-
knower phase, as well as the sole source of numeral meanings,
along with the counting principles, immediately after the induc-
tion of the cardinal principle, then the ratio signature of the ANS
should be apparent in children’s learning from training about
which labels apply to which sets. Sets labeled ‘‘ten” should be dis-
criminable from other sets according to the ratio between that set
and 10. That is, the contrast between 10 and 30 (1:3) should be the
easiest to learn, followed by 10 vs. 5 = 10 vs. 20 (1:2), followed by
10 vs. 7 = 10 vs. 15 (1:7). The present experiments test these
hypotheses.
2. Experiment 1

Experiment 1 is a replication of Huang et al. (2010), to ensure
we would succeed, as they did, in teaching ‘‘three”-knowers the
meaning of the word ‘‘four” from a few pairings of the word with
sets of four when these sets contrasted with other set sizes. Unlike
the earlier study, during the demonstration portion, when a card
was introduced with four animals, the child was told it had ‘‘four,
not one, two or three, not five, six, or seven, but four.” This pro-
vided lexical contrasts to the word ‘‘four” and unambiguously con-
veyed that ‘‘four” refers to a specific set size, and during the
training trials, the children were told the number on the compar-
ison card as well as the target card (‘‘four”) – a second lexical con-
trast providing evidence that numerals refer to specific
cardinalities. Finally, we included three sets of training trials
instead of just one as in Huang et al. (2010), increasing children’s
opportunity to learn ‘‘four.”
2.1. Method

2.1.1. Participants
The first 21 3-year-olds classified as ‘‘three”-knowers by Give-a-

Number participated (10F; 36–44 months; M = 39 months). Two
were excluded from analysis because they did not complete the
Teach ‘‘Four” task.
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Families were recruited from public birth records. Volunteers
were largely middle class with a stay-at-home parent. Ethnicity
for all four experiments was approximately 70%, non-Hispanic
White and 9% Hispanic, with the remaining 21% of the sample
comprising Native American, Asian, Native Hawaiian, and
African-American participants. All children had English as their
primary language, although some also spoke additional languages.
Each child received a toy and each family received a five-dollar tra-
vel reimbursement.

2.1.2. Screening tasks
Children’s knowledge of the count list and counting routine

were assessed by a Counting task, and ‘‘three”-knowers were iden-
tified by the Give-A-Number task. In the counting task, ten toy fish
were placed in a line and the child was asked to count them while
the experimenter pointed to each fish. All children in this paper
could count to 10 without error.

The Give-A-Number task used ten fish arranged in a jumbled
pile. Beginning with one fish, children were asked to place a certain
number of fish into a bowl. After each the trial, the experimenter
placed the fish back in the pile. The experimenter then asked the
child for two fish and so on, following a titration method in ascend-
ing order through the number six. If a child produced an incorrect
response, the experimenter took the fish out and placed them in a
line for the child to count. Once the child successfully counted the
fish, the experimenter gave them a second attempt at placing the
requested number in the bowl by saying ‘‘but I wanted X fish,
can you put X fish in the bowl.” The child’s response was recorded
as a second trial at this set size. If the child produced the correct
amount of fish on the second try, the experimenter then placed
the fish back in the pile and asked for the next number in the count
list. If the child failed on both attempts, the experimenter placed
the fish back in the pile and asked for the number below it. The
task ended with the highest numeral the child produced correctly
at least 2 of 3 times.

Each child’s knower-level was determined as in Wynn (1992)
and Le Corre et al. (2006): the highest numeral for which the child
created the correct set size at least 2 of 3 times, provided the child
did not produce this same set size for larger numerals on more
than two-thirds of trials. Specifically, the child was credited with
being a ‘‘three” knower, if they gave 3 fish at least two out of three
times when asked for ‘‘three,” and avoided giving 3 fish on at least
two of three trials when asked for larger sets (e.g., ‘‘four” or ‘‘five”).

2.1.3. Teach ‘‘Four”
The Teach ‘‘four” task had two parts: Training and Test.

2.1.3.1. Materials. Stimuli for the training component were two 1100

by 1400 demonstration cards, one with four identical pigs and one
with four identical chickens. Stimuli also consisted of seven pairs
of 1100 by 1400 training cards, each pair consisting of two sets of
the same kind of animal, i.e., goats, pigs, horses, sheep, cows, chick-
ens, or cats. One card in each pair had four animals, and the other
had a contrasting number of animals (either sets of 1, 2 or 3 ani-
mals, i.e., sets labeled by number words known by our ‘‘three”-
knower participants, or critical contrasts of 4 with sets of 5, 6,
10, or 16 animals, i.e., labels unknown by ‘‘three”-knowers). As in
Huang et al. (2010), the pairs of sets on the training cards were
not controlled for continuous extent; all of the items were roughly
100 in diameter, such that the summed area covered by the animals
was proportional to number, whereas in the test trials, number and
spatial extent were deconfounded by equating total surface area
across the two sets within a pair. Test trials used novel animals
in novel spatial configurations. See Fig. 2 for an example of one
training pair and one test pair.
2.1.3.2. Training procedure. Training unfolded in two steps: demon-
stration and training trials.

2.1.3.3. Demonstration. Children were presented with two cards,
one at a time, each with four animals (pigs and chickens). The
experimenter pointed to the card and stated the number of animals
(e.g., ‘‘this picture has four pigs”), then provided lexical contrast
(‘‘not one, two, or three pigs; not five, six, or seven pigs”), and
restated the number of animals on the card (‘‘but four pigs”). The
child was then asked how many animals were on the card. All chil-
dren replied ‘‘four.”

The demonstration then proceeded to the seven training pairs
of cards, each pair consisting of one card with a set of 4 animals
and one with a contrasting set (1, 2, 3, 5, 6, 10, or 16 animals). In
this part, the experimenter emphasized to the child that the game
is a guessing game and discouraged the child from counting. Each
child was shown the cards in one of four randomized orders. A
demonstration run through the pairs informed the child, for each
pair, which card had four animals and the number of animals on
the other card (‘‘This card has four horses; this card has ten horses,
but this card has four horses”). The child was then asked to point to
the card with 4 horses. Errors during demonstration trials were
infrequent and corrected.

2.1.3.4. Training runs with feedback. The training session then pro-
ceeded to three training runs through the same seven pairs of cards
as in the demonstration, placed side by side. For each pair, the
experimenter asked the child to indicate to the picture with 4 ani-
mals. For example, for cards depicting 4 horses and 10 horses, the
child was asked, ‘‘Which card has four horses?” The order of the
pairs was randomized across the three training runs, and the side
with 4 animals was counterbalanced. If the child pointed to the
correct card, positive feedback was provided (‘‘Great! That card
does have four horses.”). If the child pointed to the incorrect card,
the experimenter provided feedback (‘‘Good try, but this card has
four horses”). Each child was given all three blocks of training trials
unless they correctly identified the card with 4 animals on six or
seven of the seven training pairs on both of the first two training runs.

2.1.3.5. Test trials without feedback. There were 10 pairs of 1100 by
1400 test cards, depicting novel animals not used in the training
set. On three ‘‘known-known” trials, both cards displayed set sizes
for which both verbal labels were known by ‘‘three”-knowers (1v2,
1v3, and 2v3). The experimenter always asked for the larger num-
ber in the pair. These pairs simply ensured that children were still
engaged in the task, and helped to balance roughly the number of
trials where the correct set was the larger option with trials where
the correct set was smaller. On three ‘‘trained-known” trials, chil-
dren saw a card with 4 animals and a card with 1, 2, or 3 animals
(set sizes with known labels). The four critical ‘‘trained-unknown”
pairs contrasted a set of 4 with a set of 5, 6, 10, or 16 (set sizes with
unknown labels). The child was always asked to indicate the set
with ‘‘four.” Unlike in the training and practice sessions, feedback
was not provided. Instead, the experimenter provided a neutral,
yet encouraging response (‘‘Okay!”).

2.1.3.6. Analysis. All analyses in this paper fit logistic regression
models to the binary responses of each child on each trial (cor-
rect/incorrect) using the lme4 package (Douglas, Maechler,
Bolker, & Walker, 2015) in the R statistical language (http://
www.r-project.org/). For tests against chance, we analyzed the sig-
nificance of a model with a single intercept: model = glmer
(Response � 1 + (1|ID)), or model = glm(Response � 1) if each child
received only one trial for that analysis. When testing for the
significance of a particular variable, we ran a similar model
with the addition of a fixed effect: e.g., for the variable Ratio:

http://www.r-project.org/
http://www.r-project.org/


Fig. 2. Examples of training pairs and test pairs from Experiments 1–3.
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model = glmer(Response � Ratio + (1|ID)). For all analyses, we
included subject as a random effect to account for the fact that
each child received multiple trials. These nonparametric analyses
yield the same results as parametric analysis conducted on each
child’s % correct across the trials they received. For simplicity, we
include % correct statistics in addition to the coefficients generated
from the non-parametric analysis.
2.2. Results

2.2.1. Training trials
Using a ‘passing’ criterion of 6 or 7 correct out of 7 trials, only

one child passed both the first and second training runs, and thus
was not presented with the third training run. Children performed
well above chance on trained-known trials on their last two train-
ing runs (two runs of 4 vs. 1/2/3, M = 79% correct, b = 1.4, SE = 0.3,
z = 4.8, p < 0.001, 1-tailed1). This is as expected for ‘‘three”-knowers,
1 All tests that compare performance to chance are 1-tailed, as there is no reason to
expect that a child taught that ‘‘four” labels sets of 4 (or that ‘‘ten” labels sets of 10 in
Experiments 2 and 3) objects would systematically indicate the other set size in the
pair when asked to indicate which had ‘‘four” or which had ‘‘ten.”
since they know the meanings of ‘‘one,” ‘‘two,” and ‘‘three” and take
all other numerals to contrast with the sets labeled by these words.
Thus, success on these trials does not show that children had learned
anything about the meaning of the word ‘‘four.”

Performance was also above chance on the critical trained vs.
unknown trials (two runs of 4 vs. 5/6/10/16: M = 69% correct,
b = 0.9, SE = 0.3, z = 3.3, p < 0.001). Replicating Huang et al.
(2010), children quickly learned to apply ‘‘four” to the particular
sets that were demonstrated on the practice trials, but perfor-
mance was well below ceiling. Huang et al. observed this learning
on the first set of training trials, whereas for the most part, our par-
ticipants required three.

2.2.2. Test trials
Children could succeed on the practice trials by simply remem-

bering, for each particular pair, which set to pick. The test trials
involved new animals, in novel configurations, and de-
confounded total surface area and number. These trials thus pro-
vide a strong test of the hypothesis that children learned what
set size is labeled by ‘‘four.” Children performed at ceiling on
known-known trials (one run of 1vs.2/2vs.3/1vs.3:M = 98% correct,
b = 4.0, SE = 1.0, z = 3.99, p < 0.001), and well above chance on
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trained-known trials, (one run of 4 vs. 1/2/3: M = 86% correct,
b = 1.8, SE = 0.4, z = 4.8, p < 0.001), as expected of ‘‘three”-
knowers (who know, without teaching, that ‘‘four” cannot apply
to sets of 1, 2 or 3). Performance on the critical trained-unknown
trials (one run of 4 vs. 5/6/10/16), displayed on Fig. 3, was above
chance (M = 61% correct, b = 0.4, SE = 0.2, z = 1.8, p = 0.04), replicat-
ing Huang et al. (2010).
2.2.3. Effects of ratio
Unlike Huang et al., we did not find better performance on

high-ratio trials than low-ratio trials (see Fig. 3). A mixed model
logistic regression with ratio as a fixed effect, subject as a ran-
dom effect, and performance (correct/incorrect) as the dependent
variable showed no effect of ratio in the four critical trial pairs
(4 vs. 5/6/10/16) on performance on the test trials; this model
did not differ significantly from the same logistic regression
model without the inclusion of ratio as a fixed effect (F(3,72) =
0.79, p = 0.50).

Huang et al. generously made their raw data available to us. A
mixed model logistic regression examined the fixed effects of
experiment (Huang et al., Experiment 1) and trial pair (4v5, 4v6,
4v10, and 4v16), with subject as a random effect, on performance
on the critical test trials (correct/incorrect). There was no effect of
experiment (F(1,88) = 1.55, p = 0.22) and no interaction between
experiment and ratio difficulty (F(1,88) = 1.39, p = 0.24). There
was a marginal main effect of ratio difficulty (F(3,88) = 2.65,
p = 0.054); post hoc comparisons showed this effect to be due to
the difference between performance on the 4v5 pair (46% correct)
and the 4v16 pair (77% correct). We conclude that ‘‘three”-knowers
can robustly and easily be trained to identify sets that should be
labeled ‘‘four” under the conditions of training common to Exper-
iment 1 and to Huang et al. (2010).

What numerical representations underlie the meaning of the
newly learned verbal numeral ‘‘four?” Huang et al. argue that the
effect of ratio suggests that children have associated ‘‘four” with
the analog magnitude representation of approximately 4 individu-
als. However, this distance effect would also be predicted if non-
verbal counting or enriched parallel individuation underlie the
meaning of ‘‘four,” because errors are more likely for close compar-
isons than far ones in these representational systems as well.
Another form of evidence is therefore needed to determine the nat-
ure of the non-verbal representations that subset-knowers and
young CP-knowers map to verbal numerals.

If, under the brief training in this study, children map the verbal
numeral ‘‘four” to an analog magnitude symbol for approximately
4, then they must more generally have the hypothesis available to
them that number words correspond to cardinal values specified
by analog magnitudes. If so, young CP-knowers should be able to
map other verbal numerals, for example ‘‘ten,” to analog
magnitude representations, given comparable training regimes
(e.g., pairings of ‘‘ten” with sets of 10, contrasted with other sets
by large ratios), and if ANS/accumulator representations are the
sole source of meaning for verbal numerals, performance at
identifying which set has 10 should be a strict function of ratio
between the comparison set’s number of elements and 10 (the
target set’s number).
3. Experiment 2

In Experiment 2, we attempted to teach young cardinal princi-
ple knowers (CP-knowers) the meaning of the word ‘‘ten” using the
same training and testing procedure from Experiment 1, in which
we successfully taught ‘‘four” to ‘‘three”-knowers. As in Experi-
ment 1, number was confounded with spatial extent during train-
ing and de-confounded during test (see Fig. 1).
3.1. Method

3.1.1. Participants
The first twenty 3-year-olds children classified as CP-knowers

by the Give- A-Number task participated in the Teach ‘‘Ten” task
(M = 43.6 months, range: 35–47 m; 10F, 10 M). CP-knowers suc-
cessfully give 1, 2, 3, 4, 5, and 6 fish on the Give-a-number task.

3.1.2. Training procedure
Two demonstration cards, each with 10 animals (pigs or fish)

approximately 100 in diameter, were presented to the child one at
a time. The child was told, for example, ‘‘This card has ten pigs,
not one, two, or three pigs, not seven, eight, or nine pigs, but ten,”
and then asked how many pigs were on the card. All answered
‘‘ten.” This was followed by a demonstration of the six sets of train-
ing pairs (10 vs. 3, 5, 7, 15, 20, and 30). The child was shown each
pair (e.g., 10 cats and 20 cats), and told, ‘‘This card has ten cats. This
card has twenty cats, but this card has ten cats. Which card has ten
cats?” All children were correct on these demonstration trials.
Then, as in Experiment 1, three runs of training trials ensued. In
each trial, the child was shown one of the 6 pairs from the demon-
stration set and asked, e.g., ‘‘which card has ten dogs?” All children
got three training runs with feedback, unless they were correct on
5 of 6 trials on each of the first two training runs.

3.1.3. Test trials
There were six pairs of cards for the test trials, depicting the

same contrasts between sets of 10 and other quantities, but with
different animals and different spatial configurations from the
training cards. On test trials, the arrays were equated for total sur-
face area of the individuals (see Fig. 1). As in Experiment 1, there
was no feedback on test trials.

3.2. Results

3.2.1. Training trials
Using a ‘passing’ criterion of 5 or 6 correct out of 6 trials, three

children passed both the first and second runs, and thus were not
given a third training run. As expected, children easily identify
which set was 10 compared to a set of 3 (M = 95% correct, b = 2.9,
SE = 0.7, z = 4.1, p < 0.001), but these were CP-knowers and even
‘‘three”-knowers can do this by mutual exclusivity from their
knowledge of ‘‘three.” On the critical trained-unknown trials (10
vs. 5/7/15/20/30), children performed well above chance
(M = 67% correct, b = 0.7, SE = 0.2, z = 3.9, p < 0.001) on the last
two training runs. However, children may have simply learned,
trial pair by trial pair, which particular configuration is called
‘‘ten.” The test trials allow us to assess whether children had cre-
ated a mapping between the word ‘‘ten” and cardinal values of sets
of 10, since the test trials involved novel animals in novel spatial
configurations, with each pair controlled for total spatial extent.

3.2.2. Test Trials
Children in Experiment 2 robustly succeeded at the 3v10

(trained vs. known) comparison (M = 95%, b = 13.8, SE = 6, z = 2.9,
p = 0.01), but as above, this success could be driven by the knowl-
edge that sets of three are labeled ‘‘three”. If success on the Train-
ing trials reflect a newly learned mapping between the word ‘‘ten”
and cardinal values of sets of 10, then children should succeed on
critical test trials. Furthermore, any differences in performance
across training sets should be strictly a function of ratio: i.e., 10
vs. 30, easiest ratio (1:3); 10 vs. 20 = 10 vs. 5, medium difficulty
(1:2); 10 vs. 7 = 10 vs. 15, hardest ratio (1:1.5). Neither of these
predictions was born out. Fig. 4 displays the performance on the
test trails for each critical test pair (10 vs. 3/5/7/15/20 /30) for each
of Experiments 2 and 3, grouped by ratio. Children were at chance



Fig. 3. Performance on the critical test trials (4 vs. 5, 6, 10, 15) in Experiment 1 and in Haung et al. P values represent comparisons to chance using the logistic regression
analyses explained in the text: ns (non-significant), * (p < 0.05, 1 tailed), ** (p < 0.01, 1 tailed), *** (p < 0.001, 1-tailed).
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for the critical trained vs. unknown test trials overall (10 vs.
3/5/7/15/20 /30): M = 56%, b = 0.2, SE = 0.2, z = 1.2, n.s. A mixed
model logistic regression examining the fixed effect of ratio diffi-
culty (easy, medium, hard) on performance (correct/incorrect),
with subject as a random effect, revealed a marginally significant
main effect of ratio (F(2,97) = 2.99, p = 0.055, 2-tailed), but perfor-
mance was not a linear function of ratio: performance on the med-
ium difficulty (1:2) ratios were above chance (70% correct, b = 0.88,
SE = 0.41, z = 2.1, p = 0.02), whereas performance on the easiest
ratio (1:3) and the hardest ratios (1:0.7) were each at chance
(see Fig. 4). Furthermore, the two medium difficulty ratios (1:2)
were not equivalent. Children succeeded at the 10 vs. 5 comparison
(80% correct, b = 11.64, SE = 3.95, z = 2.95, p = 0.003) but failed at
the 10 vs. 20 comparison (60%, b = 0.41, SE = 0.46, z = 0.89, n.s.).
The only trained vs. unknown comparison that led to success in
Experiment 2 was 10 vs. 5, in contrast to every other trial type
(performance below chance at 7 vs. 10 and at chance for the
others). Given the failure to pick out the sets of 10 in comparison
to sets of 20 and 30, the success at 5 vs. 10, like that of 3 vs. 10,
most probably reflects mappings of sets of 5 with the word ‘‘five”
and sets of 3 to the word ‘‘three,” plus knowledge that other num-
ber words, such as ‘‘ten,” do not apply to these set sizes. If learning
what magnitude ‘‘ten” maps onto contributed to this success, chil-
dren should have also succeeded in saying which card had 10 birds
or fish when the other choice was 20 birds or 30 fish.

The finding that young CP-knowers have likely mapped sets of 5
to some verbal numeral, sufficiently to separate it from the label
‘‘ten,” is a new finding. In previous work, Le Corre and Carey
(2007) and Shusterman et al. (2016) found linear positive slopes
in some subset-knower’s and all CP-knower’s verbal estimates for
sets from 1 to 4, but they did not test 5. Le Corre and Carey found
slopes of 0 for verbal estimates of sets in the range of 6 to 10 in
young CP-knowers, and concluded that, prior to the CP-
transition, children constructed mappings between numerals and
non-verbal number representations only for ‘‘one” to ‘‘four.” Since
children avoided mapping ‘‘ten” to sets of 5, the present finding
extends the attested mapping to ‘‘five,” a theoretically important
result, since sets of 5 are beyond the putative range of parallel indi-
viduation. We seek to confirm this finding in the next two experi-
ments, and turn to its interpretation in the general discussion.

4. Experiment 3

To explore how abject the failure to map ‘‘ten” to sets of 10 is,
Experiments 3a and 3b attempted to make more salient to children
the hypothesis that the mapping between ‘‘ten” and sets of 10
should be numerical. In Experiment 3a, we de-confounded number
and spatial extent even during the training trials (Fig. 1) to high-
light that ‘‘ten” refers to numerosity, not extent. In Experiment
3b, we supported children’s learning of ‘‘ten” with their knowledge
of counting. Given that CP-knowers know a numerical meaning of
‘‘ten” in the context of counting, perhaps highlighting the place of
‘‘ten” in the count list would help CP-knowers to draw on their
existing knowledge in order to learn a mapping for ‘‘ten.” Accord-
ingly, in Experiment 3b, we used the procedure and materials of
Experiment 3a, but whenever children chose the wrong set on a
practice trial, the experimenter and the child together counted
both sets.

4.1. Participants

Three-year-old children were screened for knowledge of count-
ing and knower-levels as in Experiment 2. All children classified as
CP-knowers participated in the Teach ‘‘Ten” task (Experiment 3a,
N = 19, 9F, M = 43.5 months, range: 38–47 months; 9F; Experiment
3b, N = 21, 13F, M = 41.7 months, range 37–47 months). One addi-
tional CP-knower did not complete the teaching task and was
excluded from analysis.



Fig. 4. Performance on critical test trial (10 vs. 5, 7, 15, 20, 30) in Experiments 2 and 3. P values represent comparisons to chance using the logistic regression analyses
explained in the text: ns (non-significant), * (p < 0.05, 1 tailed), ** (p < 0.01, 1 tailed), *** (p < 0.001, 1-tailed).
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4.2. Procedure

The training and testing portion of Experiment 3a were identi-
cal to Experiment 2, with the exception that in Experiment 3a, the
total surface area of the sets of animals in each pair was equated
(see Fig. 1) during the training trials as well as during the test trials.
Experiment 3b was identical to Experiment 3a, except for addi-
tional counting feedback provided for an incorrect answer during
the practice runs. If a child did not select the array with ten objects,
the experimenter responded with ‘‘Good guess, but this one has
ten. Can you count and make sure?” After the child counted ten,
the experimenter responded, ‘‘Yes! THAT card has ten; I’ll count
and see how many this one has,” proceeding to count the number
of animals on the other card, as experimenter could count faster
and more accurately than the child, especially on the larger sets.
The experimenter then repeated how many animals were on the
other card (e.g., ‘‘this card has seven bunnies”), and then pointed
to the card with ten and said, ‘‘and this card has ten bunnies.”
4.3. Results

4.3.1. Training trials
Using a ‘passing’ criterion of 5 or 6 correct out of 6 trials, three

children in Experiment 3a and three children in Experiment 3b
passed both the first and second sets of training trials. Thus, as in
Experiment 1, most children required three sets of training trials.

As in Experiment 2, children performed above chance on the 10
vs. 3 (trained vs. known) trials on the last two training runs: Exper-
iment 3a, 92% correct, b = 2.5, SE = 0.6, z = 4.1, p < 0.001; Experi-
ment 3b, 93% correct, b = 10.7, SE = 3.9, z = 2.6, p < 0.001. As in
Experiment 2, children were above chance on the critical training
trials (trained vs. unknown, 10 vs. 5, 7, 15, 20, 30) in both
experiments: Experiment 3a, 66% correct, b = 0.7, SE = 0.2, z = 3.7,
p < 0.001; Experiment 3b, 70% correct, b = 0.9, SE = 0.2, z = 3.9,
p < 0.001. Again, young CP-knowers clearly learned to pick the
correct set of ten objects from the pairs of sets in the demonstra-
tion and practice sets. We must turn to the test trials,
which involved new animals in novel configurations, to establish
whether they had created a mapping between the numeral ‘‘ten”
and sets of 10.
4.3.2. Test trials
Children correctly indicated a set of ten objects in the 10 vs. 3

test trials (trained vs. known): Experiment 3a, M = 89% correct,
b = 12.7, SE = 6.3, z = 2.0, p = 0.02; Experiment 3b, M = 95% correct,
b = 13.9, SE = 6.0, z = 2.3, p = 0.01. The data from the critical test tri-
als are displayed on Fig. 4. In Experiment 3a, as in Experiment 2,
children were at chance at the critical test trials (10 vs.
5/7/15/20/30): overall performance, M = 52% correct, b = 0.1,
SE = 0.2, z = 0.3, n.s. In Experiment 3b, performance did not exceed
chance on a 2-tailed test, but was significantly above chance on a
1-tailed test, which would be justified by the directional hypothe-
sis. As will be seen below, this borderline success is due entirely to
performance on the 10 vs. 5 trials: overall M = 59% correct, b = 0.4,
SE = 0.2, z = 1.8, p = 0.03, 1-tailed. And as in Experiment 2, perfor-
mance on test trials did not scale with ratio. Performance on 10
vs. 30 trials (easy, 1:3; 32% correct in Experiment 3a; 62% in 3b)
and 10 vs. 7 and 10 vs. 15 trials (hard, 1:0.7; 42% correct in 3a;
52% in 3b) was at or below chance in both experiments, whereas
performance on 10 vs. 5 and 10 vs. 20 (medium 1:2; 71% in 3a;
64% in 3b) was above chance in both experiments, but this was
due entirely to performance on the 10 vs. 5 trials (see Fig. 4).
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In sum, as is apparent in the analyses reported above, and by
inspection of Fig. 4, the pattern of results in each of Experiments
3a and 3b was identical to those of Experiment 2. In spite of
deconfounding number and spatial extent during the training trials
in both experiments, in spite of engaging counting in Experiment
3b, and in spite of emphasizing the numerical contrasts between
the pairs of training trials in both Experiments 2 and 3, young
CP-knowers showed no evidence of having mapped ‘‘ten” to ANS
representations of 10: when asked which set had ‘‘ten” animals,
they failed on the tests trials to distinguish novel sets of 10 from
sets of 20, or even sets of 30, as well as from sets of 7 and 15.

Experiment 3 replicated Experiment 2 with respect to the status
of sets of 5. These young CP-knowers robustly demonstrated that
they knew the label ‘‘ten” does not apply to sets of 5. However,
their clear failure to distinguish sets of 10 from sets of 7, 15, 20
and 30 in the test trials suggests that they had not learned a map-
ping between ‘‘ten” and ANS representations of 10.
5. Summary of results

In Huang et al.’s experiment, as well as in our Experiment 1,
‘‘three”-knowers easily learned to apply ‘‘four” to sets of four in
the training trials, as shown by their choices in the novel test trials,
in which they applied ‘‘four” to sets of four when contrasted with
sets of 5, 6, 10, or 15. In contrast, across three Teach ‘‘Ten” exper-
iments, children successfully learned labels for sets of ‘‘ten” during
the training trials, but failed to generalize this learning to test trials
involving novel trained-unknown cardinal values. In all three
experiments, they failed to apply the label ‘‘ten” to novel sets of
10 when these were contrasted with sets of 7, 15, 20, or 30. Fur-
thermore, performance on each of these four comparison ratios
in each experiment was at chance, as was overall performance at
each comparison when the experiments were combined to
increase statistical power. Over all 60 participants, performance
on the 10 vs. 7 test trials was 40%, the 10 vs. 15 test trials was
52 %, the 10 vs. 20 test trials was 52% and the 10 vs. 30 was 50%.
The one exception was the overall success, over all 60 participants,
on the 10 vs. 5 test trials (85%, significantly better than chance, cor-
rected for 5 comparisons2).

To further address the hypothesis that the success on the 10 vs.
5 comparison reflected antecedent knowledge concerning the car-
dinal meaning of the word ‘‘five,” we examined performance on
all 60 children in Experiments 2 and 3 on the very first training trial
when children were asked which of sets of 5 and 10 had ‘‘ten.”
Whereas children overall failed on the first set of training trials,
necessitating three repetitions for most children, performance
was 70% on the first 5 vs. 10 training trial (b = 0.85, SE = 0.29,
z = 2.97, p = 0.0065). Merely being told once, in the demonstration
run, that ‘‘this card has ten, this one has five, and this one has ten”
was sufficient for success, suggesting that children already knew
that a set of five should be called ‘‘five.” That is, the 10 vs. 5 com-
parison, like the 10 vs. 3 comparison, is a trained-known compar-
ison. In contrast, taking all 60 children together, they succeeded at
none of the other specific critical training contrasts (not 10 vs. 7, 10
vs. 15, 10 vs. 20 nor 10 vs. 303) after seeing just one demonstration
of each before the first training run, although they were above
2 Performance on 10 vs. 5 on test was significantly above chance (b = 1.73,
SE = 0.36, z = 4.80, p<0.001), corrected for 5 comparisons. Performance on 10 vs. 7
(b = �0.41, SE = 0.26, z = �1.54, p = 0.24), 10 vs. 15 (b = 0.07, SE = 0.26, z = 0.26, ns.), 10
vs. 20 (b = 0.07, SE = 0.26, z = 0.26, ns.), and 10 vs. 30 (b = 0.0, SE = 0.26, z = 0.0, ns.)
was not significantly different from chance, correcting for 5 comparisons.

3 Performance on 10 vs. 5 on the first practice trial was significantly above chance
(b = 0.85, SE = 0.29, z = 2.97, p = 0.0065). Performance on 10 vs. 7 (b = 0.07, SE = 0.26,
z = 0.26, p = 0.45), 10 vs. 15 (b = 0.20, SE = 0.26, z = 0.77, p = 0.45), 10 vs. 20 (b = 0.27,
SE = 0.26, z = 1.03, p = 0.45), and 10 vs. 30 (b = 0.55, SE = 0.27, z = 2.04, p = 0.08) was
not significantly different from chance, correcting for 5 multiple comparisons.
chance on each of these comparisons over the last two training runs4.
Their success on these latter trials reflected learning for each picture
pair, which one had ‘‘ten,” as shown by their failure to discriminate
novel test pairs on the basis of the trained numerical contrasts.
6. General discussion

Replicating Huang et al. (2010), ‘‘three”-knowers could be
quickly taught to pick out sets of ‘‘four”. Exact cardinal meanings
for ‘‘one” through ‘‘four” are all achieved by the end of the
subset-knower phase and fully present in CP-knowers (Le Corre
& Carey, 2007). Indeed, that ‘‘three”-knowers successfully learned
something about what ‘‘four” meant from the minimal training
in Experiment 1, and from only 1 demonstration in Huang et al.
(2010), suggests they might have had fragile knowledge of ‘‘four”
already (see Wagner, Chu, & Barner, submitted for publication).
Nonetheless, the training was necessary; children in Experiment
1 did not succeed on the first set of critical practice trials with
‘‘four.”

The important finding from the present studies is the failure, as
a group, of 60 young CP- knowers to learn to map ‘‘ten” to sets of 10
under identical circumstances in which even younger ‘‘three”-
knowers learn to map ‘‘four” to sets of 4. In all three experiments,
children succeeded by at least the second and third sets of training
trials to associate ‘‘ten” with particular arrays, but failed abjectly to
generalize this knowledge on the basis of the numerical contrasts
between sets of 10 and other set sizes to new exemplars (new
kinds, new spatial arrangements).

These results bear on what non-verbal representations underlie
the meanings of ‘‘one” to ‘‘four” for subset-knowers, for they sug-
gest that children – even young CP-knowers – do not have an
over-hypothesis that number words pick out set sizes as specified
by ANS representations. If this hypothesis were available to them,
they should have mapped ‘‘ten” to representations in the ANS of
sets of 10. Contrasts of 10 vs. 20 and 10 vs. 30 are vastly greater
than the resolution of the ANS by the age of the children of Exper-
iments 2 and 3 (Halberda & Feigenson, 2008); indeed the sets of 10
are easily discriminable from the contrasting set in each training
and test pair. Thus, if the meaning of ‘‘four” that allows children
to decide that it refers to a set of 4 rather than a set of 7 or 10 is
exhausted by ANS representations of the numerosities of sets,
and representations of the same sort underlie the meanings of
‘‘one” through ‘‘three,” children who were even older would have
been expected to easily learn that ‘‘ten” refers to sets of 10 as con-
trasted with sets of 30. In spite of repeated efforts, Experiments 2
and 3 failed to find any evidence in support of this hypothesis.

These studies provide a new source of data suggesting that the
analog symbols that are the output of the ANS system of represen-
tation are not likely to underlie the meanings of verbal numerals in
the subset-knower stage. Nevertheless, these data do not force that
conclusion. As Dehaene and Mehler (1992) pointed out, the fre-
quency of usage of number words decreases vastly over ‘‘one”
through ‘‘ten,” a phenomenon readily observable in child directed
speech. Le Corre et al., 2016, analyzed CHILDES transcripts of par-
ental input to Mandarin and English learners, finding that verbal
numerals are frequent in speech to toddlers. In particular, ‘‘four”
is more frequent, both overall and in cardinal usages in particular,
in these corpora than ‘‘ten” (cardinal usages in English input:
‘‘four” is 0.36/1000 utterances; ‘‘ten” is 0.16/1000 utterances; in
Mandarin input: ‘‘four” is 1.5/1000 utterances; ‘‘ten” is 0.47/1000
4 Performance on all trials was significantly above chance on the last two practice
trials, correcting for 5 multiple comparisons: 10 vs. 5: b = 1.44, SE = 0.23, z = 6.21,
p < 0.001; 10 vs. 7: b = 0.43, SE = 0.21, z = 2.06, p = 0.032; 10 vs. 15: b = 0.46, SE = 0.20,
z = 2.25, p = 0.032; 10 vs. 20: b = 0.71, SE = 0.29, z = 2.45, p = 0.021; 10 vs. 30: b = 1.39,
SE = 0.45, z = 3.12, p = 0.007.
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utterances. Thus, taking both languages together, ‘‘four” is about 2
½ to 3 times more frequent in the child’s input than ‘‘ten.” Exper-
iments 2 and 3 show that young CP knowers do not work out a
mapping between ‘‘ten” and the ANS representation of the cardinal
value of sets of 10 from the 28 pairings they have of ‘‘ten” with sets
of 10 (as contrasted with sets of 3, 5, 7, 15, 20, and 30). Perhaps
young children, even CP-knowers, simply need more pairings of a
verbal numeral with a set size, and more contrasts with other set
sizes, in order to map the number word to an ANS value, such that
the success in Experiment 1 reflects a past history of many more
pairings of ‘‘four” with sets of 4 than older children have experi-
enced pairing ‘‘ten” with sets of 10. If this hypothesis is right, it
should be possible to teach 4-year-olds that ‘‘ten” means approxi-
mately 10 (as specified by the ANS) with more input.

The present experiment cannot rule out this hypothesis, but
clearly the child does not have an overhypothesis that supports
fast mapping of ‘‘ten” to approximately 10. Indeed, Sullivan and
Barner (2014) showed that even 6-year-olds have created map-
pings between verbal numerals and ANS values only up to ‘‘five”
or ‘‘six.” Six-year-olds have heard ‘‘ten” in cardinal contexts vastly
more than 3-year-olds have heard ‘‘four” in cardinal contexts.

The present data, along with Sullivan and Barner’s findings,
raise the question of why, for young children, ANS values are not
readily amenable to labeling with words. Since rats and other ani-
mals can formulate non-verbal rules over ANS values, it would be
interesting to know whether it is possible to teach such rules to
subset knowers or young CP-knowers (e.g., press the button N
times when cued to do so; hit the button when you see a display
of N dots, where N is demonstrated non-verbally). Since rats can
do so (Platt & Johnson, 1971), we expect 3-year-old children could.
The next question would be whether they just as easily learn could
learn that words express such values. It is possible that children
could learn non-verbal rules about certain quantities, but not
word-to-ANS mappings for the same quantities with similar train-
ing conditions. Such a finding would suggest strong constraints on
word meanings, such that ANS values are not candidate sources of
meanings for number words.

One unanticipated finding was that young CP-knowers had
apparently mapped ‘‘five” to sets of 5 (or at least to some set-
size that could not be 10). This finding might seem to pose a prob-
lem for the enriched parallel individuation hypothesis concerning
the non-verbal representations that support number word mean-
ings, because working memory capacity of children this age is unli-
kely to be 5. Future work should address whether the linear
function between set sizes of 1–4 and numerals ‘‘one” through
‘‘four” that all CP knowers display extends to 5 - ‘‘five.” If so, one
possible explanation is that parallel individuation has reached a
capacity of 5 individuals by 3.5–4 years of age (see Starkey &
Cooper, 1995, for suggestive evidence this might be so). Another
possible explanation is that children create the long term memory
representation of enriched parallel individuation for sets of 5 by
chunking representations of 4 and 1, or 3 and 2, and similarly
chunk the representations of currently attended sets for purposes
of comparison to their long term memory models. These hierarchi-
cal set chunking capacities are attested in infants as young as
14 months (Feigenson & Halberda, 2004; Rosenberg & Feigenson,
2013). Such hierarchical representations allow the child to expand
their working memory capacity. For example, a child who knows
up to ‘‘four” could use non-verbal hierarchical chunking to underlie
a representation of 4 + 1: ({g h i j}{a}), which the child could poten-
tially use as a basis for labeling the ‘‘five.”

The data presented here motivate us to reject the ANS value
hypothesis concerning the non-verbal representations that under-
lie the meanings of ‘‘one” through ‘‘four” in the subset-knower
phase. This conclusion, however, does not preclude the possibility
that some mapping between words and the ANS has been created
before children become CP-knowers. Indeed, there is very strong
evidence this is so, including the fact that many subset knowers’
verbal estimates of the number of individuals in arrays of individ-
uals are positively related to set size (Cheung et al., 2016;
Gunderson et al., 2015; Odic et al., 2015; Wagner & Johnson,
2011). Odic et al. (2015) even demonstrated a linear relationship
between the number of pats produced and the numbers requested
(6, 8, or 10) by all CP-knowers (word-to-ANS mapping). However,
the results from the current experiment suggest that whatever
mapping there might be, if any, between the ANS and verbal
numerals in the subset-knower period, or in the period of transi-
tion to becoming a CP-knower, it is unlikely to involve associative
mappings between the numerals up to ‘‘ten” and ANS values. If this
type of mapping had already been established, young CP-knowers
should have been able to succeed without training in the practice
trials in Experiments 2 and 3 when the comparison ratios were
between the sets of 10 and the other set were large (e.g., 10 vs.
20 and 10 vs. 30), and they also should have succeeded at these
ratios during the test trials after training.

Of course, even adults who create systematic mappings
between numerals and ANS values into the hundreds, do not do
so by creating individual mappings between ‘‘forty- nine”, ‘‘two
hundred twelve,” ‘‘three-hundred twenty-five,” etc., on the one
hand, and ANS representations of sets of 49, 212, and 325, etc.,
on the other. Rather, they have created a structure mapping
between the count list as a whole and the ANS as a whole, and they
estimate the word that would apply to a given set size by comput-
ing a ratio between the set to be estimated and a set for which
there is a known ANS value-word mapping, and asking what word
stands in the same relation in the count list to the known word in
that ANS-value pair. The primary evidence for such a structure
mapping derives from calibration effects: telling people that a set
of 100 is ‘‘one-hundred and fifty” for example, causes people to
systematically overestimate the number that would apply to a
wide range of other sets (see Izard & Dehaene, 2008). In two ele-
gant papers, Sullivan and Barner (2012), Sullivan and Barner
(2014) probed two signatures of bidirectional ANS-word mappings
to ask, which, if any, adults and children have constructed. They
made two predictions. First, they reasoned that if subjects have
an ANS value-to-word mapping between a verbal numeral and
an ANS value that supports estimation (either word-to-ANS or
ANS-to-word), then the acuity of that estimation should be pre-
dicted by the acuity of non-verbal numerical discriminations in
that region of the ANS. Second, they predicted that where such
ANS value mappings have been created, subjects should be rela-
tively impervious to the recalibration effects that reflect structure
mappings between the count list and ANS values. By both of these
signatures, most adults have created ANS value to word mappings
only up to 12-‘‘twelve” or 15-‘‘fifteen” or so, and rely on structure
mapping when providing verbal estimations of the cardinal values
of larger sets. And five- to seven-year-old children – much older
than those in the present studies – appear to have created ANS
value-to-word mappings only up to 5-‘‘five”or 6-‘‘six.” Like
Sullivan and Barner’s (2014) findings, the results of the present
studies confirm that young children do not readily form direct
associations between verbal numerals and ANS representations
of cardinal values higher than around 5.

The data from the current paper converge with other arguments
that ANS value-to-word mappings are not necessary for the transi-
tion between being a subset-knower and a CP-knower. However,
there are other ways that the ANS might support the transition
to CP-knower. Specifically, perhaps a structural mapping between
the ANS and the count list as a whole is created during the
subset-knower period and plays a role in the transition. The sim-
plest structure mapping would be a ‘‘later greater” generaliza-
tion—the generalization that words later in the count list refer to
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larger numbers as specified by the ANS. Some subset-knowers
clearly have such a mapping, indicated in numerical estimation
tasks (i.e., quantity-to-word tasks) by small positive slopes
between set sizes and verbal estimates in the 6–10 range (e.g.,
Gunderson et al., 2015) and, in a word-to-quantity task, pat-the-
tiger, patting more when asked to pat ‘‘ten” times than when asked
to pat ‘‘six” or ‘‘eight” times (Odic et al., 2015). Clearly, if children
have created this structure mapping, this might help them in the
transition to becoming a CP-knower, which involves learning just
this rule (later-greater), as well as the successor rule (next numer-
al = exactly 1 greater; see Davidson, Eng, & Barner, 2012; Sarnecka
& Carey, 2008). However, knowledge of a later-greater rule applied
to a subset-knowers’ whole count list is unlikely to be necessary
for the transition to CP-knowledge, for two reasons. First, not all
subset knowers demonstrate knowledge of this rule before they
become CP-knowers. Le Corre’s and Carey’s data (2007; confirmed
by Gunderson et al., 2015) suggests that even some young CP-
knowers have not created that minimal mapping as applied to
their whole count list: they do not consistently provide higher ver-
bal estimates for the cardinal values of sets of 10 than for sets of 6.
Relatedly, some children are likely to have the later-greater rule
long before making the transition to CP-knower (Gunderson
et al., 2015); if this rule were sufficient, then one would expect a
rapid transition to CP-knower. Second, the slope of numerals pro-
duced as a function of set size probed is usually very shallow,
around 0.2—not even close to the slope of 1 that would reflect an
accurate mapping between number words and quantities. Given
the wide variation in children’s understanding of the later-
greater rule prior to becoming CP-knowers, it is difficult to see
how this mapping can be interpreted as a necessary foundation
for children’s number word meanings.

It is important to note that acquiring a successful later-greater
structure mapping logically requires that at least some verbal
numerals have been associated with specific ANS values. A child
could not learn the generalization that later of two numerals in
the count list picks out the larger of two sets (as specified by the
ANS) without having mapped at least some small numbers to
ANS values. After all, ANS values are automatically computed in
the presence of attended sets, and so once the child has learned
the meaning of the words ‘‘one,” ‘‘two”, ‘‘three” and ‘‘four” such
that they reliably apply to sets of 1–4 respectively, the child is in
the position to create these associations, which then could be input
into learning the later-greater rule. What we are arguing here is
that these associations do not constitute themeanings of the verbal
numerals in the subset-knower period, and they do not contribute
to an over-hypothesis that the meaning of all number words is pro-
vided by a specific ANS value.

It is also important to stress that the ANS is foundational to
arithmetic in other senses. The ANS is an innately interpreted sys-
tem of number representation that supports computations of
numerical comparison and numerical calculations. Once integrated
with numeral representations, it supports intuitions about such
calculations and sometimes, in the case of numerical comparison,
is automatically engaged (Dehaene, 2011). While it is no doubt
important to mathematical reasoning, we conclude that the ANS
is not the foundation of the meanings of the first explicit symbols
for the positive integers. Further research should continue to seek
positive evidence that bears on whether enriched parallel individ-
uation, or some other system of representation, supports children’s
initial number word meanings.
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