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Highlights
A widely accepted hypothesis has
emerged in cognitive science that an
analog number system supplies the cog-
nitive foundations of human arithmetic
ability.

We provide evidence from experimental
psychology, human history, and the phi-
losophy of mathematics that is difficult to
explain on this hypothesis.

We describe evidence that acquiring
integer concepts depends first on
capacity-limit small set representations
Do children learn number words by associating them with perceptual magni-
tudes? Recent studies argue that approximate numerical magnitudes play a
foundational role in the development of integer concepts. Against this, we
argue that approximate number representations fail both empirically and in prin-
ciple to provide the content required of integer concepts. Instead, we suggest
that children’s understanding of integer concepts proceeds in two phases. In
the first phase, children learn small exact number word meanings by associating
words with small sets. In the second phase, children learn the meanings of larger
number words by mastering the logic of exact counting algorithms, which imple-
ment the successor function and Hume’s principle (that one-to-one correspon-
dence guarantees exact equality). In neither phase do approximate number
representations play a foundational role.
(for numbers up to ~3–4).

Later learning depends crucially on mas-
tery of exact counting algorithms, and on
how these algorithms implement logical
notions that are defined over words, indi-
viduals, and relations between them, but
not over analog number representations.

Learning to represent integers involves
learning how the ordinal structure of
counting encodes the successor func-
tion, and how counting implements a se-
quential procedure for evaluating one-to-
one correspondence and the equality of
sets (i.e., Hume’s principle), which allows
children to overcome the capacity limits
of parallel computations of one-to-one
correspondence that restrict small
number word meanings.
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A Current Hypothesis Concerning the Ontogenesis of Integer Concepts
In recent years a bold hypothesis has emerged in cognitive science that human mathematical
knowledge arises from the ability to encode the approximate cardinality of sets using the analog
number system (ANS; see Glossary). The ANS is an evolutionarily ancient system that is
observed in non-human animals, human infants, children, and adults [1–8]. Many studies assume
[9–11] or explicitly argue [12–18] that the initial meanings of verbal numerals, which in adults
express integer concepts, are provided by the creation of item-based associations between
number words and ANS values (i.e., representations of particular numerosities).

Compatible with this hypothesis, adults exhibit mappings between verbal numerals and
approximate numerical magnitudes [19–26]. These mappings begin to emerge early in devel-
opment [27–31] and play a role in numerical computations [1]. In addition, there are small but
reliable correlations between children’s ability to discriminate sets using the ANS and their
arithmetic competence [32,33], and some studies find that training a child’s ANS can im-
prove arithmetic performance ([34,35], but see [36–39] for critiques of these findings). Finally,
the neural substrates for the ANS overlap with those deployed in arithmetic and abstract
mathematics [40]. These facts establish that the ANS is integrated with symbolic mathemat-
ical thought in numerate adults.

However, we address a stronger thesis, which we call the ‘Approximate Origins Hypothesis’, that
ANS representations are not only associated with integer concepts but constitute their primary
ontogenetic origin, providing a conceptual foundation from which number words are learned.
Crucially, the studies described above do not establish when children develop mappings be-
tween numerals and the ANS, whether such mappings play a role in learning integer concepts,
or even how they could. In fact, there are strong empirical and logical reasons to doubt this hy-
pothesis. Evidence supports an alternative – the ‘Exact Algorithms Hypothesis’ – that posits
the gradual integration of exact cardinal meanings with recursive counting procedures.
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Glossary
Analog magnitude system (AMS):
humans discriminatemagnitudes across
many dimensions of experience
including perceived brightness,
loudness, length, surface area, density,
and intensity of pain. In each case, the
ability to discriminate magnitudes is
ratio-dependent, and therefore
governed by Weber’s Law. These facts
suggest that humans represent diverse
dimensions of experience using a
common format of representation, an
observation which has led some to claim
that all magnitude discrimination is
supported by a single generalized
magnitude system [95–98]. However,
the systems differ with respect to their
content, with the result that they take
different stimuli as inputs and support
different inferences. For the purposes of
this paper, we individuate systems
according to differences in content, and
therefore refer to the ANS as one of
many AMS systems.
Analog number system (ANS): a
perceptual encoding system which
takes as input a sensory representation
of a set of individuals and creates an
analog symbol that is approximately
proportional to the cardinal value of the
set. If lengths served as ANS symbols,
––, ––––, ––––––––––, and
–––––––––––––––––––– could be ANS
symbols representing 1, 2, 5, and 10,
respectively. The mental symbols that
correspond to these external analog
symbols are called ANS values in the
text. A signature of the ANS, as for all
AMSs, is that the discriminability of
magnitudes accords with Weber’s law.
Cardinal extension: the ability to
recognize that, if a set F has a particular
cardinal label (e.g., ‘ten’), then all other
sets that stand in one-to-one
correspondence with F should be
extended the same label (i.e., sets in
one-to-one correspondence have the
same cardinal label).
Cardinal meaning: the number of
items in a set is its cardinality. A cardinal
meaning is the number of items denoted
by a number word.
Cardinal principle (CP)-knower: a
child who can reliably give sets larger
than 3–4 in the give-a-number task by
virtue of counting. Although this behavior
was interpreted by early studies as
evidence that children have learned the
cardinal principle – namely that the last
number used when accurately counting
a set denotes the exact cardinal value of

Trends in Cognitive Sciences
Empirical Challenges to the Approximate Origins Hypothesis
Item-based associations between words and the ANS are clearly not the basis for adult inte-
ger concepts. First, although adults map the ANS to number words, these mappings are not
item-based associations but are instead holistic structure mappings (Box 1), and therefore
are not invariant across contexts – a crucial requirement for integer concepts. In tests of
random dot-array estimation, adult estimates for large sets are shifted holistically by a single
instance of miscalibration [41,42]. In addition, when adults are shown two dot-arrays (2:1 or
3:4 ratio) and must pick which is labeled by a particular number word, they perform at or near
chance, compatible with a lack of item-based associations [42]. Similarly, when comparing
the magnitudes of Arabic digits and dot-arrays, performance is markedly worse than when
directly comparing dot-arrays to one another, suggesting that the content of numerals is
not defined by associations with magnitudes [43]. Finally, although the intraparietal sulcus
represents both symbolic (words, digits) and non-symbolic (visual sets) number in the
brain, directly correlating patterns of activation for particular quantities across these two
formats finds no evidence of shared representations [44]. In sum, there are no stable item-
based associations between number words and ANS values that could supply integer
concepts.

Evidence against the Approximate Origins Hypothesis also comes from studies of how children
acquire number words. Shortly after age 2 years, middle-class children in the USA learn to recite
a verbal count list to around ‘ten’ [45,46], but lack meanings for these words [47,48]. They begin
by learning a meaning for ‘one’, then months later ‘two’, then ‘three’ and sometimes ‘four’ in se-
quence [30,46–52]. This protracted period, evaluated using the give-a-number task, is called
the subset-knower stage. Sometime later, at the age of 3½ –4 years, children learn to accurately
count and generate sets for any number within their count list, at which point they are classified as
cardinal principle (CP)-knowers.

These stages provide several challenges to the Approximate Origins Hypothesis. First is why
children only learn meanings for ‘one’ through ‘four’ before they become CP-knowers. Some
have argued that this set-size limit may reflect the poor ANS acuity of preschoolers, and that
mappings for larger numbers exist but are simply not exact [12]. Against this, there is abundant
evidence that most children lack mappings between verbal numerals and ANS values above 3–
4 until after they become CP-knowers. When asked to estimate sets from 1 to 10, ‘three-’ and
‘four’-knowers, as well as many CP-knowers, provide accurate responses for 1–4. But subset
knowers, as well as roughly half of young CP-knowers, provide random estimates for larger
numbers [27,30]. Some studies claim that subset-knowers do map larger numerals to the
ANS [17,27,53]. However, as we review elsewhere [54], these findings either conflict with
other similar datasets, fail to classify children’s knower levels, or make analytic decisions that
frame children’s response errors as being compatible with ANS signatures, when in fact the
tasks used are incapable of measuring such signatures. A reanalysis of past studies finds little
evidence for mappings above ‘three’ or ‘four’ [54], and computational models of children’s be-
havior confirm that capacity-limited stages, rather than the ANS, provide the best account of
existing data [51,55,56]. Given that non-human animals can learn to condition responses on
specific ANS values [1–3], there is no reason in principle why children aged 2–3 years could
not learn to associate ‘seven’ with ANS values of approximately 7, given sufficient evidence.
However, existing evidence suggests that the ANS does not provide the numerical content
of even small numerals ([57]; Box 2).

Eventually children do acquire mappings between larger numerals and the ANS [27–30]. Children
aged 5–7 years show evidence of item-based associations between numerals and the ANS, but
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the set – more recent studies suggest
that CP-knowers may initially deploy a
blind procedure.
Give-a-number task: a task that tests
(i) which words children have assigned
cardinal values, and (ii) whether they
have acquired the cardinal principle.
Children are given a set of objects
(e.g., 10 fish), and are asked repeatedly
to give different numbers – e.g., ‘can you
give me two fish?’ The task is used to
assign children ‘knower levels’ as
follows: a child is for example a ‘two-
knower’ if they correctly give 2 at least
two to three times when asked for ‘two’,
and if when they give 2 this is in response
to the number word ‘two’ on at least
two/three of trials (e.g., they do not
merely give 2 for everything).
Integer concepts: an integer is a
whole number (i.e., does not include
fractions). Integer concepts are mental
representations that encode integers.
Integer concepts are distinct from
number words, which are in some
instances labels for integer concepts.
One-to-one correspondence: a
function relating two sets, such that for
every element in one set, there is also an
element in the other set. Hume’s
principle states that two sets are equal in
number if they exhibit one-to-one
correspondence.
Ontogenetic origin: the word
‘ontogenesis’ refers to the development
of an organism within its lifetime. An
ontogenetic origin is an early emerging
structure, biological substrate, or
representational format that plays a
causal role in developmental change.
Parallel individuation (PI): a system
dedicated to representing individuals
(e.g., objects). When a small set is
attended to, a single mental symbol is
created for each object and is stored
in a working memory model of the
collection. PI is capacity limited – the
attention and working memory of both
infants and adults are limited by the
number of individuals in a set. By 10
months of age, preverbal infants
successfully track up to three simple
objects at a time, but fail to track larger
sets of four or more.
Subset-knower: children who can
respond correctly on the give-a-number
task for a subset of numbers, but who
do not yet know the cardinal.
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only up to about 6; mappings for children’s larger numerals are not item-based but, as in adults,
are based on a holistic and malleable structure mapping [28].

Clues from the Cultural History of Counting
The Approximate Origins Hypothesis also confronts a broader puzzle that is presented by human
cultural history. If number word meanings merely reflect the content of the ANS, why would our
human ancestors have bothered to create counting systems in the first place, rather than simply
associating verbal labels with ANS values? The historical record suggests that humans con-
structed counting systems rooted in systems of one-to-one correspondence to overcome
the noisy limits of perception, and in support of equitable trade [58–73].

Although many languages that lack counting systems have labels for numbers up to 3–4 ([62,71,
74,75]; Box 3), no language features a system of large approximate cardinal meanings. Many lan-
guages have singular morphology, others have dual morphology for sets of 2, and some even
have trial markers for sets of 3 ([62]; Box 3). However, no language exhibits morphology for car-
dinal values of 5 or more, whether exact or approximate [62,74,75]. When humans first created
symbols for larger sets, they did not begin by associating words with ANS magnitudes, working
from these associations to derive rules of arithmetic. Instead, they beganwith labels for small sets,
and expanded these representations with exact algorithmic systems – for example, tally systems
that place objects into one-to-one correspondence with arbitrary external symbols, beads,
stones, or body parts [59,61,74–82]. For example, many tally systems begin with fingers and
toes to tally the first 10–20 items, and then extend onto other body parts to tally larger sets. Al-
though tally systems can represent numerical magnitudes, ANS representations are not impli-
cated at any step in a tally. Instead, the fixed order of tallies in a body count guarantees that
any two counts ending at a particular location (e.g., elbow) will generate equal sets. This, in
turn, creates the conditions for words such as ‘hand’ and ‘foot’ to be used as shorthand descrip-
tions for the outcomes of counts – in other words, to represent cardinal values. For example, in
some dialects of Hup, an Amazonian language, the word for 5 translates as ‘one-hand’, 10 as
‘hands-be-finish’, and 20 as ‘feet-be-finish’ [78]. Similar systems have been documented in mul-
tiple languages throughout the Amazon region, as well as in other regions of the world.

In sum, over cultural evolution, as in ontogenesis, exact symbolic number representations begin
with verbal representations of small sets that are independent of counting. A separate system,
beginning with one-to-one tallies, extends exact representations to larger numbers. In this re-
spect, the historical facts paint a portrait analogous to the facts from child development. How-
ever, as we describe below, the problem faced by children differs from that of our ancestors in
one crucial respect. The cultural construction of large exact numbers emerged from tally systems
that explicitly used one-to-one correspondence to establish the cardinal equivalence of sets. By
contrast, children are provided a count list that is initially learned as a meaningless routine and
must gradually learn how this list implements number.

Approximate Number Could Never Build Exact Number
Despite the evidence reviewed thus far, is it possible that future studies might show that the ANS
does, after all, supply the building blocks from which number word meanings are built? We be-
lieve the answer to this is a definitive ‘no’. First, there is currently no well-articulated causal theory
regarding how the ANS might play such a role. Second, we believe that no such theory is forth-
coming because the ANS lacks the content that number words express.

Formally, integers can be defined in at least two provably equivalent ways commonly discussed in
the philosophy of mathematics ([83–85]; Box 4), although other formulations exist [86–88]. One
Trends in Cognitive Sciences, 2019, Vol. 23, No. 10 825



Box 1. Associative Mapping and Structure Mapping

Multiple studies have found evidence for two distinct forms of mapping between verbal numerals and ANS values. One mechanism involves the formation of item-based
associations between individual number words and corresponding ANS values, such that the mappings for each number word are distinct. A second mechanism in-
volves the formation of a single analogical mapping between the structure of the verbal count list as a whole and a range of corresponding ANS values, such that the
mappings for different numbers words are causally interdependent.

Previous studies have found that, in adults, associative mappings extend up to the number 10 or 12, whereas in children aged 5–7 years they extend up to the number 5
or 6, such that estimation of larger numbers is supported by structure mapping. In support of this divide, when participants are shown two dot-arrays (e.g., 10 and 20)
and asked to match a single label to one of the two (e.g., ‘ten’), both children and adults succeed for small numbers, but respond at or near chance for large numbers
despite being equally good at discriminating these comparisons perceptually (Figure I). In addition, when asked to make verbal estimates of dot-arrays up to, for
example, 350, participants who are told that the largest array they will see is, for example, 750 shift their estimates for all dot-arrays except those in the small number
range, which are resilient to miscalibration.

These studies provide evidence for robust item-based associative mappings between small number words and ANS values, but structure mappings for numbers
beyond 10. These findings are important because they suggest that children and adults lack stable, item-based associations between individual number words and
ANS values, such that if the ANS supplied the meanings of number words then their meanings would be malleable and context-dependent, and therefore would be
unable to support reliable, exact, mathematical computation.
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Figure I. Discrimination and Number Matching. (A) Stimuli for dot-array discrimination and number-matching tasks. (B) Performance of 5-year-old children on
discrimination and number-matching tasks.
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approach begins with Hume’s principle that one-to-one correspondence guarantees numerical
equivalence. Counting leads to representations of numbers that respect Hume’s principle because
items in a counted set are tagged in one-to-one correspondencewith numerals that are uttered in a
fixed order: Any two counts that respect one-to-one correspondence and end in the same numeral
will therefore generate sets that are equal. The task of children is to learn how blind one-to-one pro-
cedures guarantee equality, and how this is related to the cardinal meanings of number words. A
second way to define the integers is via the Peano axioms, which include the successor function
as a primitive (i.e., every number, N, has a successor, N+1). Counting mirrors the successor func-
tion in its syntax because it providesmorphological rules for generating the next numeral in a verbal
count sequence when one individual is added to an already enumerated set [89]. As we review
below, children also learn how the syntax of counting relates to cardinal increments of +1, and
thus how counting implements the successor function.

Crucially, both Hume’s principle and the successor function implicate representations well
beyond what the ANS provides to learners [90–92]. First, the ANS lacks a mechanism like one-
826 Trends in Cognitive Sciences, 2019, Vol. 23, No. 10



Box 2. Over-Hypothesis about Mappings of Number Words to ANS

If the meanings of ‘one’ to ‘four’ are provided by mappings to ANS values, and these mappings play a role in the CP-in-
duction, then CP-knowers should have an over-hypothesis that all number words express distinct ANS values. If so,
CP-knowers should readily learn a mapping between other known number words (e.g., ‘ten’) paired with sets with the la-
beled cardinality (e.g., 10 birds). Contrary to this, Carey et al. [57] trained 60 young CP-knowers on pairs of sets of animals
(e.g., Figure I) until they could reliably identify which set contained ‘ten’. The set sizes that contrasted with 10 during training
were 3, 5, 7, 15, 20, or 30. All children learned which of these specific training pairs contained ‘ten’. After training, children
were then tested on novel stimuli – new animals and new spatial configurations, and with the same ratios between sets as
in training (e.g., Figure II). Although the numerical contrasts involved in each training and test pair were discriminable by
children of this age, children failed to identify the set of 10 on test trials (i.e., 10 vs 7, 40% correct; 10 vs 15, 52% correct;
10 vs 20, 52% correct; 10 vs 30, 50% correct), with no evidence of a ratio effect characteristic of the ANS. Thus, children
failed to map ‘ten’ to ANS representations of sets of 10.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Training Associating ‘Ten’ with a Set of 10 versus 20 (Mock-Up of Actual Stimuli).

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure II. Test Trial Asking Children to Find ‘Ten’ with Sets of 10 versus 20 (Mock-Up of Actual Stimuli).
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to-one correspondence that can establish the exact equality of sets. The ANS is a type of analog
magnitude system (AMS), not a system for representing relations between individuals or sets.
Thus, it cannot represent one-to-one correspondence as a matter of principle because one-to-
one correspondence is a function defined over individuals, not magnitudes. Similarly, the ANS
provides no way to represent the successor function. Like real or rational numbers, the ANS
lacks the notion of ‘next number’which is required for establishing a successor function. Although
one-to-one correspondence and the successor function can each be used to describe large
numerical magnitudes, the ANS cannot explain the origin of these principles. Based on similar ob-
servations, some have argued that the ANS should not be called a number system at all, and that
the word ‘number’ should be reserved for symbolic numeral systems ([72], see also [93–98]).
Cognitive Sciences, 2019, Vol. 23, No. 10 827



Box 3. Languages with Bounded Number Systems

Historically, many languages have featured words for small sets of up to 2–3 despite lacking a counting system. Such
languages/groups include Jarawara, Krenak, Warlbiri, Kamilarai, East Tukanoan, Aranda, Fuegian, Vedda, Botocudos,
and some dialects of Nadahup [71,74,75,82].

Many languages feature dual morphology, which operates like the English plural, but to designate sets of two. These
include Sanskrit, Greek, Hebrew, Slovenian, Sorbian, Chakavian, Arabic, Old Irish, Old English, Old Norse, andGothic [62].

Some languages reportedly feature not only singular and dual morphology but also trial morphology, including Larike,
Ngan’gityemerri, Marrithiyel, and Anindilyakwa, although the existence of so-called quadral languages with words for sets
of ‘4’ is a topic of controversy [62,103,104].

In some languages, such as Slovenian (Example I), some dialects have a dual and others do not, creating a natural
experiment. Recent studies find that children who learn a dual dialect are quicker than non-dual learners at learning exact
meanings for the words ‘one’ and ‘two’, even though these groups have similar amounts of training with counting [104].
One reason for this may be that when children hear the word for 2 in their input, it occurs with dual morphology, such that
children who understand the dual can infer that number words used in this context encode sets of 2.

Example I. Comparison of English and Central Slovenian Descriptions of 1 and 2.

English: One red button is lying on the table

Central Slovenian: En rdeč gumb leži na mizi

English: Two red buttons are lying on the table

Central Slovenian: Dva rdeča gumba ležita na mizi
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Although we resist this stronger position here, given that analog representations can have numer-
ical content, we share the conclusion of these studies that, despite being able to represent the
magnitude of sets, the ANS cannot represent number in the way that the integers do.

Recognizing these problems, some proponents of the Approximate Origins Hypothesis have
sought to supplement the ANS with additional machinery, for example by also positing innate
principles that are coextensive with the Peano axioms or Hume’s principle [99,100]. However,
once this innate knowledge is added, the ANS is no longer necessary to explain the origin of in-
teger concepts because the proposed innate principles already supply all of the needed content.
Moreover, these accounts still fail to explain the protracted course of number word learning, as
well as the specific attested stages of learning. Although it remains possible that children are
endowed with innate logical knowledge of integer concepts, we currently lack evidence for this,
and also lack a theory for how children identify these representations as being relevant to number
words from a larger space of possible linguistic meanings. What is clear is that adding rich innate
representations cannot rescue the Approximate Origins Hypothesis, but only replaces the role of
the ANS in explaining the origin of integer concepts.

Any future version of the Approximate Origins Hypothesis must confront this challenge: it should
not only show how number words become associated with the ANS (or how a logic can re-
describe magnitudes) but also how the ANS might provide the conceptual basis for acquiring
the logic of counting and large exact number words. Short of stipulating that the ANS has such
content – that fundamentally it is not a magnitude system, but a logical system – it is difficult to
see how such a proposal might work.

The Exact Algorithms Hypothesis
If the Approximate Origins Hypothesis fails to explain the origin of integer concepts, how else
might they arise? Under our proposal – the Exact Algorithms Hypothesis – there are two distinct
phases of development that are analogous to two aspects of the historical record. First, children



Box 4. Foundations of Number

The foundations of arithmetic are often described by using a set of axioms (self-evident statements), as articulated
by Dedekind and Peano. These axioms include statements of equality such as ‘for every number, n, n = n’, or ‘for three
numbers n, m, and p, if n = m and m = p, then n = p’. They also included axioms stating that 0 (or in some versions 1)
is a natural number, and that describe a ‘successor function’. The successor function is defined, in part, by the statement
that ‘every natural number, n, has a successor S(n) which is also a natural number’.

In his book The Foundations of Arithmetic, Frege [87] famously showed that the foundations of arithmetic can also be
expressed using ‘Hume’s Principle’ and a second-order logic [83–85]. Hume’s principle is sometimes stated as follows:
two sets F and G are numerically equal if for every item in F there is a corresponding item in G and for every item inG there
is a corresponding item in F (Figure I). In other words, two sets are equal if their members stand in perfect one-to-one
correspondence.

These mathematical axioms were articulated thousands of years after humans first began counting, suggesting that
deriving an explicit set of axioms is no easy feat. However, the counting systems of numerate adults nevertheless express
content that is compatible with these axioms, suggesting that they acquire mental representations that are coextensive
with them. Evidence that children’s use of number words respects either one of these descriptions would provide evidence
for exact cardinal integer concepts. Therefore, researchers should seek to identify when children’s number words respect
either Hume’s principle or the successor function, and should ask which representations and learning experiences are
involved in acquiring such knowledge.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Hume’s Principle. Two
sets are equal if, for each element
in set F there is a corresponding
element in set G, and vice versa.
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acquire small exact number word meanings by associating words with small sets and, second,
they discover the logic of counting through the repeated use of its algorithms to model set repre-
sentations. Neither phase implicates representations of approximate numerical magnitudes.

Small Number Words
Under the Exact Algorithms Hypothesis, the meanings of small number words such as ‘one’,
‘two’, and ‘three’ are acquired from representations of small sets. Before children learn to
count, they begin acquiring linguistic representations of sets, including quantifiers such as
‘some’ and ‘all’, as well as singular, dual, and plural morphology [101–105]. Notably, learning
these verbal set representations is correlated with learning small number words. First, children
who are faster to acquire the meanings of words such as ‘some’ and ‘all’ are also faster to
learn their first number words [105]. Second, children learning languages with singular/plural
marking are faster to begin learning number words relative to children learning languages without
singular/plural agreement [106–108]. Third, children learning languages with a singular/dual dis-
tinction are faster to learn the meanings of the words ‘one’ and ‘two’ than are children who
speak a dialect of the same language that lacks a singular/dual distinction [103,104]. These data
Cognitive Sciences, 2019, Vol. 23, No. 10 829
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suggest that set representations are available to children early in acquisition, and that morphology
and number words may draw on similar representational resources. However, they raise two im-
portant questions: (i) why are children’s first exact number representations limited to 3 or 4, and
(ii) what form do the non-verbal representations encoded by these words take?

Studies of preverbal infants suggest one explanation for the set limits found in early number
language. Infants, like adults, can attend to multiple objects in parallel and encode them in work-
ing memory [parallel individuation (PI)] [92,109–112]. For example, if infants see from one to
three objects hidden in a box and are allowed to search and retrieve them, they continue to
search until all objects are recovered. Surprisingly, performance collapses if more than three
objects are hidden, suggesting that PI represents each individual using a distinct mental symbol
in working memory, and that the number of symbols that can be tokened in parallel is limited to
~3, resulting in the set-size limit found in infants.

Importantly, PI representations cannot alone supply the meanings of number words. PI pro-
vides working memory models of individual items attended to in the here and now, but not
long-term summary representations of sets and their properties that could serve as cardinal
meanings. Even so, we see two ways that it might play a role. On one hypothesis [30], PI pro-
vides a representational medium for small number word meanings, and is enriched by long-
term memory to represent cardinality. For example, a long-term memory model of a particular
set {finger,finger} might be associated with the word ‘two’, such that any currently attended set
that can be placed in one-to-one correspondence with this model, can be labeled ‘two’. Alter-
natively, instead of providing the medium of representation, PI might provide a capacity-limited
one-to-one system for evaluating hypotheses, which are articulated in another format, such as
the set representations of natural language that support singular/dual/plural, quantifiers, etc.
[92]. On either account, small number word meanings are grounded in set representations
that support computations like one-to-one correspondence. However, these representations
are still not enough to explain the origin of integer concepts. For this, a system of exact counting
algorithms is required.

Counting, the Successor Function, and Hume’s Principle
Although representations of small sets play an important role in the acquisition of small number
words, they cannot alone explain the origin of integer concepts. First, like the ANS, they cannot
express a recursive rule like the successor function. Second, they cannot be used to assess
equality for numbers greater than 3–4 because they compute one-to-one correspondence in a
parallel, capacity-limited way. Counting, by contrast, provides an external (verbal) medium with
a structure that mirrors successor relations between integers, and establishes a one-to-one cor-
respondence between labels and objects sequentially, which guarantees that any two counts
that end at the numeral will have the same exact cardinal value. Crucially, this exact algorithm
does not impose a set-limit on one-to-one correspondence because every step is computation-
ally equivalent independent of magnitude: each requires knowing where one is in a count (e.g., the
last word counted was ‘twenty-five’), what comes next (‘twenty-six’), and that as each number
word is uttered, an additional item should be counted. Thus, counting allows children to redeploy
an existing understanding of one-to-one correspondence in a sequential procedure that provides
exact meanings for an unbounded number of numbers. The challenge is to explain how children
make this developmental transition.

If the logic of number words arose from associating the count list to ANS values and noticing
properties of this mapping, we might expect children to begin learning this logic early in develop-
ment because even 2-year-old children have robust ANS representations and have begun to
830 Trends in Cognitive Sciences, 2019, Vol. 23, No. 10
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count. However, there is substantial evidence that learning this logic hinges on becoming a
CP-knower, years later, and thus on the mastery of counting algorithms. First, although children
begin to count by age 2 years, they only begin to learn how counting represents the successor
function after they become CP-knowers. Subset-knowers are unable to infer that adding 1 to a
set of 4 results in ‘five’, let alone that all numbers have a successor, or that numbers are infinite,
and half of young CP-knowers also fail this task [113–116]. When trained on the successor
function, CP-knowers improve, whereas subset-knowers matched at pretest on knowledge of
the successor function do not, suggesting that becoming a CP-knower is a gateway to acquiring
this knowledge [85]. Most likely this is because learning a verbal encoding of the successor
function builds directly upon counting abilities found only in CP-knowers, not just on associations
between words and magnitudes. Only by around age 5½ years – 1 or 2 years after they become
CP-knowers – do children exhibit evidence of having learned a fully recursive successor function
that generates an infinite set of numbers, a feat which may be related to learning the grammatical
rules that generate numbers in the count list itself [92,115–118,123].

Similarly, there is evidence that children’s appreciation of Hume’s principle is related to their mas-
tery of counting algorithms. Although children deploy various one-to-one procedures early in
childhood (e.g., counting while pointing to objects, patty-cake, eeny-meeny-miney-mo), they
lack insight that these procedures establish numerical equality. The knowledge that one-to-one
guarantees equality (i.e., Hume’s principle) is not connected to children’s use of number words
until after they become CP-knowers [119–122]. Compatible with this, Frydman and Bryant
[119] asked children to share 15 candies equally between three recipients, and, after allowing
them to count one of these three sets, asked them how many the other recipients received, a
form of transitive inference called cardinal extension [122]. They found that children who
were old enough to be CP-knowers (i.e., 4-year-old children) failed, whereas most 5-year-old
children succeeded, indicating that children likely learned the link between one-to-one corre-
spondence, equality, and number words after the CP transition. More recent studies [120–122]
confirm this. For example, Sarnecka and Wright [121] presented subset-knowers and CP-
knowers with sets aligned in one-to-one correspondence, told them the cardinal label of one
set, and then asked them how many were in the second set. Only CP-knowers performed better
than chance, suggesting that this is a crucial prerequisite for learning how one-to-one correspon-
dence relates to the cardinal meanings of number words.

Integrating the Exact Algorithms and the ANS
We began by noting that exact symbolic representations of number are ultimately integrated with
the ANS, and that this integration is important to using numbers in mathematical reasoning.
Historically, it is likely that humans invented exact counting algorithms precisely because they
observed, via their senses, that sets differed in numerical magnitudes, but realized that these
percepts were too noisy to be reliable tools of equitable trade and record keeping [123]. Although
integer concepts are not built from the ANS – and could not be – the integration of these systems
is both natural and beneficial to human numerical reasoning and social interaction.

The history of mathematics provides multiple examples of how representing reality in multiple
ways enhances understanding. For example, Descartes’ integration of graphical and algebraic
representations of mathematical functions demonstrated that although either of these formats
of representation can represent functions, each makes different aspects of the same reality
more or less salient and available to different types of computations. Mapping exact symbolic sys-
tems tomagnitudes adds intuitive content and allows explicit symbols to inherit the computational
affordances of the magnitude system (e.g., numerical comparison and approximate arithmetic).
Symbolic systems are sometimes difficult to use when they are not mapped to magnitudes,
Trends in Cognitive Sciences, 2019, Vol. 23, No. 10 831



Outstanding Questions
Is becoming a CP-knower purely a
matter of learning yet another blind-
counting procedure, or does it mark
a moment of conceptual insight in
which children understand something
new about how numbers represent
cardinality? If so, what?

How does counting come to respect
Hume’s principle in development, and is
this related to mastery of how counting
encodes the successor function? Or are
these causally distinct in development?

Many studies find no mappings to the
ANS before the CP-knower stage,
and failures to train mappings even in
CP-knowers. When is the ANS inte-
grated with counting, and are there
conditions under which such map-
pings can reliably be trained before
mastery of counting? At what point in
the mastery of cardinal meanings, and
of counting, do children first show evi-
dence of holistic structure mappings?

In what ways can computational
modeling and cognitive neuroscience
illuminate our studies of how children
come to represent integers?
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explaining why it takes time to transition fromCelsius to Fahrenheit, to recognize good versus bad
deals in a foreign currency, or to reason in a novel counting system such as binary notation [124,
125]. Although approximate magnitudes do not explain where exact symbols come from, they
are often the things that we describe when we use numerals, and they play a central role in giving
numerals their intuitive connection to the world.

Concluding Remarks
Adults associate number words with the ANS via a holistic structure mapping which lacks stable,
item-based, cardinal meanings. Neither small number words nor counting, however, implicate the
ANS. Developmental and anthropological data suggest that humans are predisposed to learn
linguistic forms describing small sets, and that larger cardinal meanings depend on constructing
a system of exact counting algorithms. Current work suggests that learning integer concepts
depends on learning counting procedures, and integrating them with computations like one-to-
one correspondence and the successor function. Counting procedures are crucial because re-
peated acts of counting create a workspace in which children can learn relations between num-
bers, objects, and sets.

Many outstanding questions remain. First, given that children begin counting many months
earlier, it remains uncertain why they must become CP-knowers before they learn that counting
offers a sequential procedure for assessing one-to-one correspondence and equality, and is
governed by a successor function. Is becoming a CP-knower purely a matter of learning a
blind counting procedure, or does it mark a moment of conceptual insight? Second, when do
children integrate the ANS with counting – and can such mappings be trained before mastery
of counting? Could learningmappings play a role in later stages of countingmastery – for example
to learn that numbers later in the count list denote greater quantities? Finally, how can the com-
plex developmental facts described here be captured by formal computational models, to afford
precise formulation and assessment of hypotheses? (see Outstanding Questions). Previous
models [126] demonstrate that integers can be built from primitives including set representations,
a count list, a quantificational logic, and input that pairs number words with cardinal values. How-
ever, as argued elsewhere, much work remains to align such models with existing developmental
evidence [127]. A future priority is the development of models tested against rich developmental
data which confront how logical representations are implemented in the mind and deployed in
learning.
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