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It is well-established that people make predictions during language comprehension—the nature and
specificity of these predictions, however, remain unclear. For example, do comprehenders routinely make
predictions about which words (and phonological forms) might come next in a conversation, or do they
simply make broad predictions about the gist of the unfolding context? Prior EEG studies using tightly
controlled experimental designs have shown that form-based prediction can occur during comprehension,
as N400s to unexpected words are reduced when they resemble the form of a predicted word (e.g., ceke
when expecting cake). One limitation, however, is that these studies often create environments that are
optimal for eliciting form-based prediction (e.g., highly constraining sentences, slower-than-natural rates
of presentation). Thus, questions remain about whether form-based prediction can occur in settings that
more closely resemble everyday comprehension. To address this, the present study explores form-based
prediction during naturalistic spoken language comprehension. English-speaking adults listened to a story
in which some of the words had been altered. Specifically, we experimentally manipulated whether
participants heard the original word from the story (cake), a form-similar nonword (ceke), or a less-similar
nonword (vake). Half of the target words were predictable given their context, and the other half were
unpredictable. Consistent with the prior work, we found reduced N400s for form-similar nonwords (ceke)
relative to less-similar nonwords (vake)—but only in predictable contexts. This study demonstrates that
form-based prediction can emerge in naturalistic contexts, and therefore, it is likely to be a common aspect

of language comprehension in the wild.

Public Significance Statement

This study demonstrates that English-speaking adults predict the initial sounds of upcoming words when
listening to stories. Form-based prediction of this kind has long been considered a marginal phenomenon
in language comprehension research. Thus, these findings suggest that, by using ecologically valid
techniques like the Storytime paradigm, researchers can better understand the mechanisms that humans

use to process information in their everyday lives.
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2 YACOVONE, WAITE, LEVARI, AND SNEDEKER

When listening to a story or conversation, we use the sounds
that we are hearing to reconstruct the message that the speaker is
trying to convey. To do this, we must represent the incoming
signal at multiple distinct levels (as phonemes, words, syntactic
structures, and ideas). One of the central discoveries in psycho-
linguistics is that these representations are built (and refined) via
both bottom-up and top-down processing. Bottom-up processing
is when information from one level is used to build higher, more
abstract representations (e.g., turning sounds into words and words
into phrases). In contrast, top-down processing is when information
from higher levels is used to influence which representations are
being built at levels below (e.g., using world knowledge to interpret
what someone just said or even to predict what someone is about
to say).

Decades of research in psycholinguistics have focused on the role
of top-down processing during language comprehension—and in
particular, the role of linguistic prediction.' This work provides
ample evidence for predictive processing of this kind, largely from
reading time studies, visual world eye-tracking studies, and studies
that use electroencephalography (EEG). In these studies, compre-
henders read predictable words faster than unpredictable ones; they
look toward particular referents in anticipation of them being
mentioned; and they show reduced neural responses to words that
are consistent with their top-down predictions (for reading studies,
see Ehrlich & Rayner, 1981; Rayner & Well, 1996; Smith & Levy,
2013; for visual world studies, see Altmann & Kamide, 1999;
Borovsky et al., 2012; Kamide et al., 2003; Milburn et al., 2016; and
for EEG studies, see DelLong et al., 2005; Federmeier & Kutas,
1999; Van Berkum et al., 2005; Wicha et al., 2004).

Given these findings, there is now a general consensus that top-
down prediction occurs during language comprehension (Pickering
& Gambi, 2018). What remains unclear is whether prediction occurs
at all levels of representation or only at higher ones (DeLong et al.,
2021; Freunberger & Roehm, 2016; Ito et al., 2016; Nieuwland,
2019). One possibility is that, in general, comprehenders only make
broad, high-level predictions about the gist of a sentence’s meaning
as it unfolds. The other possibility is that, in addition to making these
more general predictions, comprehenders might also make more
precise predictions about the specific word(s) that will come next
(Altmann & Mirkovié¢, 2009; Heilbron et al., 2022; Willems et al.,
2016). Recent evidence from EEG suggests that comprehenders’
predictions can be lexically specific and occur at both levels of word
meaning and word form (Brothers et al., 2015; DeLong et al., 2005;
Ito et al., 2016; Laszlo & Federmeier, 2009; Wicha et al., 2004). But
as we discuss below, form-based prediction appears to be more
limited than semantic prediction, occurring primarily in tightly
controlled experiments that use very predictable designs and/or
slower-than-natural rates of presentation (for discussion, see Ito et
al., 2016; but see DeLong et al., 2021). In the present study, we try
to better understand the scope of this phenomenon by asking
whether form-based prediction occurs when people simply listen
to a naturally produced story with no explicit task beyond
understanding it.

In the remainder of this introduction, we will do three things:
First, we review the EEG literature on form-based prediction during
language comprehension. Second, we consider the paradigms that
are typically used, the limits of their ecological validity, and the
questions that these limits raise about prediction in the wild. Finally,

we discuss how the present study is designed to explore form-based
prediction in a more naturalistic listening context.

Reviewing the EEG Evidence for Form-Based Prediction
During Comprehension

EEG studies have been central to our understanding of predictive
processes during language comprehension (e.g., Beres, 2017,
Federmeier, 2022; Kutas et al., 2006, 2014; Kutas & Federmeier,
2011; Payne et al., 2020; Swaab et al., 2012; Van Petten & Luka,
2012). In these studies, researchers typically record changes in
participants’ neural activity at the scalp as they comprehend a variety
of sentences (Kutas et al., 2006; Kutas & Van Petten, 1994; Morgan-
Short & Tanner, 2013; Swaab et al., 2012). These recordings are then
time-locked to the onset of particular words, creating event-related
potentials (ERPs). The interpretation of ERPs focuses on stable
patterns of neural activity called components, which are typically
distinguished from one another based on their voltage direction,
peak latency, and scalp distribution, as well as their sensitivity to
particular variables (for reviews, see Kappenman & Luck, 2011;
Luck, 2014). In the following sections, we review the ERP
components that most commonly emerge in the study of form-
based prediction in spoken language: the N400, the P600, and
two early negativities known as the Phonological Mismatch
Negativity (PMN) and the N200.

The N400 as an Effect of Lexicosemantic Preactivation
During Comprehension

One of the best understood and most replicated components in
psycholinguistic research is the N400. This component is a negative-
going deflection in the ERP waveform that typically emerges over
centroparietal electrode sites and peaks between 300 and 500 ms
poststimulus onset (Kutas & Federmeier, 2011). The N400 was first
observed in studies that had participants read sentences with
anomalous endings, for example, “He spread the warm bread with
socks” (Kutas & Hillyard, 1980). For this reason, the N400 was
initially characterized as a response to semantic anomalies. However,
most contemporary theorists reject this characterization because it
fails to account for the wide range of plausible contexts in which
N400 effects also appear (Federmeier, 2007, 2022; Federmeier et al.,
2007; Kuperberg, 2007; Kuperberg et al., 2020; Kutas & Federmeier,
2011). In fact, there is an N40O response to every word, whether it
is presented in isolation or within a sentence context (Kutas, 1993;
Kutas & Federmeier, 2000, 2011; Payne et al., 2015; Rugg, 1990;
Van Petten & Kutas, 1990).

In contemporary psycholinguistic theories, the N400 is seen as an
index of the relative ease of accessing the lexicosemantic features of
a word (e.g., Federmeier, 2022; Kuperberg et al., 2020). There is
ample evidence to support this interpretation: First, the N400 for

"In the present study, we consider any preactivation due to top-down
processing as a form of prediction (for similar definitions, see DeLong,
Troyer, et al., 2014; DeLong et al., 2021; Huettig et al., 2022; Kuperberg &
Jaeger, 2016, Section 3, p. 39; Kutas & Federmeier, 2011; Pickering &
Gambi, 2018). This contrasts with theorists who reserve the term prediction
for a distinct form of processing in which an active commitment is made to
upcoming material using mechanisms that are distinct from the incremental,
top-down processes described above (see Kuperberg & Jaeger, 2016, Section
4, pp. 45-47; Kutas et al., 2011, for discussion).
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FORM-BASED PREDICTION IN STORYTELLING CONTEXTS 3

a given word is larger when the word is presented in isolation and
smaller when it is presented within a plausible sentence (Kutas,
1993). As we described above, when words are presented in a
broader context, they often become predictable to some degree,
and comprehenders may be able to preactivate representations
associated with them before they appear in the input. Thus, the
reduction in the N400 response to a word within a sentence is
often attributed to top-down prediction facilitating lexicosemantic
processing (Federmeier, 2007; Lau et al., 2008, 2013; for
computational descriptions of the N400, see Nour Eddine et al.,
2022). Second, within a given sentence, the N400 to each
subsequent word decreases as the cumulative context makes each
word more and more predictable (Payne et al., 2015; Van Petten &
Kutas, 1990, 1991). Third, N40O responses have an inverse
correlation with cloze probability measures from offline sentence
completion tasks, such that the N400 responses to words become
smaller as the predictability of the words increases (Kutas et al.,
2019; Kutas & Hillyard, 1984).

Subsequent research has built on this basic insight, using the
N400 to explore which features of a word (or concept) are preactivated
by the context during language comprehension (e.g., DeLong et al.,
2005, 2019, 2021; Federmeier & Kutas, 1999; Heilbron et al., 2022;
Tto et al., 2016; Kim & Lai, 2012; Laszlo & Federmeier, 2009; Otten &
Van Berkum, 2008; Wang et al., 2020; Wicha et al., 2004). For
example, in a foundational study by Federmeier and Kutas (1999),
participants read sentences like “The yard was completely covered
with a thick layer of dead leaves. Erica decided it was time to get out
the (rake/shovellhammer).” In this context, the word rake is highly
predictable, presumably leading to the preactivation of its semantic
features. By hypothesis, this should result in reduced N400Os to shovel
relative to hammer because the former shares more semantic features
with rake (e.g., both are tools for yard work). As expected, the authors
observed graded N400 responses such that expected words (rake)
produced the smallest N400s, followed by semantically similar words
(shovel), and then dissimilar words (hammer).

Evidence for preactivation of form features comes primarily from
reading studies with violations that are orthographic neighbors of
the predicted word. For example, Laszlo and Federmeier (2009) had
participants read sentences with highly predictable endings like (1)
and (2) below. In this study, the authors replaced these predictable
sentence-final words with violations that either resembled or did
not resemble the orthographic form of the original word. These
orthographic violations were manipulated between items such that
some sentences ended with form-similar conditions (neighbors,
as in 1) and other sentences ended with dissimilar conditions
(nonneighbors, as in 2). The authors also manipulated the lexical status
of each violation, such that the violations were either unexpected words
(bark, clam), nonwords (pank, horm), or illegal strings (bxnk, rqgck).

1. Neighbors: Before lunch, he had to deposit his paycheck
at the (bank/bark/pank/bxnk).

2. Nonneighbors: The genie was ready to grant his third and
final (wish/clam/horml/rqck).

Similar to Federmeier and Kutas (1999), the authors observed
graded N400 responses such that orthographic neighbors (regardless
of lexical status) produced smaller N40Os than nonneighbors. They
interpreted this finding as evidence that, in sentences with strong
contextual constraints, readers can rapidly predict upcoming words

and preactivate their orthographic features. These form-based
predictions then facilitate the processing of expected words
and form-similar violations. These findings have been replicated in
a handful of other studies using both real-word and nonword
manipulations (DeLong et al., 2019, 2021; Kim & Lai, 2012; Liu
et al., 2006). And critically, these findings have been linked to
top-down prediction, as the reduction in N400s to form-similar
words disappears when the original target word is less predictable
(Ito et al., 2016).

The Posterior P600 as an Effect of Reprocessing Strong
Violations of Expectation

Studies on form-based prediction often report another ERP
component known as the P600 (see DeLong et al., 2019, 2021; Ito
et al., 2016; Kim & Lai, 2012; Laszlo & Federmeier, 2009).2 This
component typically emerges between 600 and 1,000 ms over posterior
electrode sites in response to anomalies or strong violations of
expectation (see DeLong, Quante, et al., 2014; Kuperberg, 2007;
Kuperberg et al., 2020; Van De Meerendonk et al., 2009; Van Petten &
Luka, 2012). In the study above, Laszlo and Federmeier (2009) found
P600s in response to their orthographic violations. Moreover, these
P600s were sensitive to their manipulations of lexical status and
orthographic similarity. First, they found that illegal strings (bxnk,
rqck) produced the largest P600s, followed by nonwords (pank, horm),
and then unexpected words (bark, clam). Second, regardless of lexical
status, the violations that closely resembled the form of the original
target words produced larger P600s than the dissimilar violations (see
also Kim & Lai, 2012).

The precise interpretation of the P600 is still debated because it is
observed in a wide range of psycholinguistic studies using various
syntactic, semantic, and phonological violations (see Kuperberg
et al.,, 2020; Ryskin et al., 2021; Van Petten & Luka, 2012).
Researchers seem to agree, however, that the P600 reflects the initial
failure to incorporate the bottom-up input into one’s higher level
interpretation of the context, as well as the set of processes related to
reprocessing that anomalous input (Brothers et al., 2020, 2022;
Hagoort & Brown, 1999; Hahne & Friederici, 1999; Ito et al., 2016;
Kim & Lai, 2012; Kuperberg et al., 2020; Laszlo & Federmeier,
2009; Osterhout et al., 1994, 2002; Osterhout & Holcomb, 1992;
van de Meerendonk et al., 2010; Van De Meerendonk et al., 2009;
Vissers et al., 2006). In line with this account, P600s tend to be
larger in highly predictable contexts (Gunter et al., 2000; Ito et al.,
2016; van de Meerendonk et al., 2010; Vissers et al., 2006) and in
situations that promote deep comprehension (e.g., reading a discourse
or listening to a narrative; see Brothers et al., 2020, 2022; Kuperberg
et al., 2020).

According to this broad interpretation, the P600s in form-based
prediction research could index comprehenders’ attempts to gather
more information about the nature of the violations, i.e., reflecting
on whether they misperceived the input or whether someone produced
a typo or speech error (Brothers et al., 2020, 2022; Kuperberg, 2007;
Kuperberg et al., 2020; Van De Meerendonk et al., 2009; van Herten
et al., 2005; Vissers et al., 2006). We return to these findings and
interpretations in the General Discussion.

2 This component has also been labeled as a Late Positive Component and
posterior post-N400 positivity. For ease of discussion, we will use the term
P600 in this article to refer to all of these findings.
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4 YACOVONE, WAITE, LEVARI, AND SNEDEKER

Early Negativities as Evidence for Form-Based Prediction
in Spoken Language Contexts

Finally, form-based prediction research has also uncovered
various ERP components that emerge before the N400 and P600
responses. These early components systematically differ across
modalities, as some are only evoked by written language while
others are only evoked by spoken language. Because the present
study uses naturalistic speech, we will describe two of these early
components from prior studies on spoken language comprehension:
the Phonological Mismatch Negativity (PMN) and the N200. These
early negativities, however, are difficult to replicate (Lewendon
et al., 2020; Nieuwland, 2019; Poulton & Nieuwland, 2022), and
many researchers simply interpret them as early emerging N400
effects (e.g., Van Petten et al., 1999). But for the sake of completeness,
we review the evidence for these two components below.

The first early component is the PMN, which was first reported in
Connolly and Phillips (1994). In this study, the authors explored
whether the initial stages of phonological processing could be
influenced by listeners’ top-down expectations about upcoming
words. To do this, they had English-speaking adults listen to various
sentences that strongly constrained for a particular sentence-final
word, e.g., “At night, the old woman locked the door.” For some
sentences, the authors kept the expected sentence-final words (door,
3a). For other sentences, they replaced the expected words with
violations that overlapped with them in their phonological onsets
(eyes — icicles, 3b), semantic features (sink — kitchen, 3c), or neither
(milk — nose, 3d). Note, in the condition with different phonological
onsets but similar semantic features (3c), the authors ensured that the
violating word (kitchen) was always less predictable than the original
sentence-final word (sink) from the target sentence.

3a. At night, the old woman locked the door. (Onset match,
semantic match; door)

3b. Phil put some drops in his icicles. (Onset match, semantic
mismatch; eyes)

3c. They left the dirty dishes in the kitchen. (Onset mismatch,
semantic match; sink)

3d. Joan fed her baby some warm nose. (Onset mismatch,
semantic mismatch; milk)

Based on their prior work, the authors expected to find two
distinct negativities: one related to processing unexpected phono-
logical features at around 200-300 ms (the PMN) and one related to
processing unexpected semantic features (the N400). Results indicated
early negativities for conditions with an unexpected phonological onset
(3¢ and 3d) relative to those conditions with the expected onset (3a and
3b). Then, in a later time window, there were greater negativities for
the two semantic mismatch conditions (3b and 3d) relative to the
conditions with semantically congruent endings (3a and 3c). Taken at
face value, this pattern suggests that there are two categorically distinct
effects: an early PMN and a later N400.

But other features of the data pattern suggest that the effects are
not discrete. The early negativity in the double mismatch condition
(milk — nose, 3d) was greater than the negativity from the condition
with just a different onset (sink — kitchen, 3c), suggesting that
features beyond phonology influenced this early negativity. In fact,
in the double mismatch condition, the PMN and the N400 blurred

together to form one large, broadly distributed negativity that lasted
from roughly 200 to 600 ms.

These findings are often contrasted with another set of findings
from Van Petten et al. (1999). In this study, English-speaking
participants listened to constraining sentences like “It was a pleasant
surprise to find that the car repair bill was only seventeen dollars.”
The authors manipulated the sentence-final word to be either the
expected word (dollars), a semantically incongruous word that shares
initial phonemes with the expected word (dolphins), or a semantically
incongruous word that rhymes with the expected word (scholars).
Results showed increased negativities for both incongruous condi-
tions, which the authors labeled as N400 effects; however, similar to
the findings above, the negativity for the condition with an
unexpected onset (scholars) emerged earlier than the negativity for
the condition with an expected onset (dolphins). Also, as in Connolly
and Phillips (1994), there was only one broadly distributed negativity
(rather than two distinct effects) for the condition with the unexpected
onset and unexpected meaning (scholars).

The second early component is the N200, which is best
characterized by van den Brink et al. (2001). In this study,
Dutch-speaking adults listened to sentences with highly predictable
sentence-final words, e.g., “De schilder kleurde de details in met een
klein penseel” (English translation, “The painter colored the details
with a small paint brush”). Similar to Van Petten et al. (1999), the
authors manipulated the target words to be either the expected word
(penseel, “brush”), a semantically anomalous word with the same
initial phonemes (pensioen, “pension”), or a semantically anoma-
lous word with different initial phonemes (doolhof, “labyrinth”). In
contrast with Van Petten et al. (1999), the authors found two distinct
negative peaks in the ERP waveforms for all three conditions—one
around 200 ms (the N200) and the other around 400 ms (the N400).
The double mismatch condition (doolhof) produced a larger N200
than the two conditions with the expected initial phonemes (penseel,
pensioen), which both produced similarly small N200 responses.
The N400 effects showed a pattern similar to those found in
the written studies above: The double mismatch violation (i.e., the
phonologically dissimilar word, doolhof) had the largest N400; the
shared onset violation (i.e., the phonologically similar word,
pensioen) had a reduced N400 relative to the double mismatch
violation; and finally, the expected word (penseel) had the smallest
N400. These effects are slightly earlier than prior findings—but the
authors argued that, because all of their target words began with
plosives, their phonological effects may have been better aligned in
time, producing more robust peaks in an earlier time window than
seen in prior studies.

More recently, Boudewyn et al. (2015) reported an N200 effect in
a study using story-based stimuli. Specifically, they had English-
speaking adults listen to two-sentence discourses that were strongly
constrained for a critical noun like cake. Then, they either presented
the expected word (cake, average cloze probability = 78%) or an
unexpected foil (veggies, average cloze probability = 0%).
They also manipulated whether the immediate local context
reinforced the global prediction (e.g., sweet and tasty... cake) or
generated competing predictions (e.g., healthy and tasty ... cake).
As expected, there were graded N400s (300-600 ms) to the critical
nouns such that the globally predicted nouns (regardless of local
coherence) evoked the smallest N400Os (sweet/healthy and tasty
cake), followed by the globally unpredicted but locally coherent
nouns (healthy and tasty veggies), and then the globally and locally
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FORM-BASED PREDICTION IN STORYTELLING CONTEXTS 5

incoherent nouns (sweet and tasty veggies). In an early time window
between 200 and 300 ms, Boudewyn et al. (2015) found increased
frontal negativities for the globally and locally incoherent word
(sweet and tasty veggies) relative to the other conditions. The
authors interpreted this early N200 effect for the double violation
condition as reflecting the distinct cost associated with detecting the
mismatch between the predicted lexical form and the form that
comprehenders encountered in the input.

Although some authors consider early negativities to be
categorically distinct from the N400, others interpret such effects
as early modulations of the N400 (e.g., Van Petten et al., 1999; for
discussion, see Lewendon et al., 2020; Nieuwland, 2019). On these
accounts, the negativities produced by the unexpected conditions
in the studies above simply reflect the degree of facilitated access
at the form level due to the prior preactivation of phonological
features. There are two patterns that favor this hypothesis: First,
as the findings above suggest, these early negativities vary
considerably in their timing and scalp locations, and they are often
continuous (in time and space) with the later N400 effects. Second,
the same factors that influence the N400 also influence these early
negativities, suggesting a similar functional interpretation for these
effects (see Lewendon et al., 2020; Nieuwland, 2019). Given the
wide range of interpretations, and the instability in these early ERP
components, we focused our analyses on the N400 and P600 in the
present study.

Reviewing the Typical Paradigms in Form-Based
Prediction Studies and Their Limitations

The findings above demonstrate that comprehenders can, under
some circumstances, predict the form of upcoming words. Most of
this evidence, however, comes from studies with paradigms that are
very similar to one another and quite different from the typical
contexts of language comprehension. Thus, it is unclear how
broadly these findings generalize to more real-world settings.
Specifically, all of the studies to date ask participants to attend to a
stream of unrelated sentences with either no clear purpose or with a
goal that is independent of comprehension (e.g., monitoring for
errors). Often, but not always, these studies present their sentences
in ways that diverge from how language is normally produced. For
example, in many EEG reading studies, the sentences are presented
word-by-word and often at a rate that is slower than typical reading
(Ito et al., 2016; Kim & Lai, 2012; Laszlo & Federmeier, 2009;
Vissers et al., 2006; but see DeLong et al., 2021).

Several recent studies have explored how presentation rate
in particular might influence form-based prediction. For example,
Ito et al. (2016) conducted two experiments in which they
directly manipulated the predictability of sentences and the rates of
presentation. Participants read sentences with highly predictable target
words (e.g., “The student is going to the library to borrow a book
tomorrow”’) and moderately predictable target words (e.g., “The family
went to the sea to catch some fish together”). In these experiments, the
target words were manipulated to be one of the following word types:
the expected word (book), a semantically similar word with no form
overlap (page), a semantically dissimilar word with form overlap
(hook), or a word with no overlap in semantics or form (sofa). To test
for an effect of presentation rate, they conducted the same experiment
twice: In the first experiment, they presented sentences word-by-word
with 500 ms between the onsets of each word—a rate similar to other

studies in the literature (e.g., Kim & Lai, 2012; Laszlo & Federmeier,
2009). In the second experiment, the time between word onsets was
increased to 700 ms.

As expected, Ito and colleagues found N400 effects in all
violation conditions (hook, page, sofa) in both experiments. The
N400 effects for semantically similar words (page) were smaller
than those for unrelated words (sofa) at both presentation rates.
This reduction, however, was only present in the highly predictable
sentences, suggesting that preactivation of semantic features
occurred regardless of presentation rate as long as the target word
was predictable in its context. In contrast, the N400 effects for
words with form overlap (hook) were only reduced when the
sentence was both highly predictable and presented at a slower
rate. In all other conditions, the N400 effects for words with
overlapping forms (hook) patterned with those for the unrelated
words (sofa). The authors concluded from these findings that it is
easier to preactivate semantic features relative to lower level
features (e.g., phonological form), perhaps because top-down
predictions are initially made at the higher level of meaning and
thus activate semantic representations before they can trickle
down to lower levels and activate representations of form.

In short, Ito et al. (2016) found that, although semantic prediction
occurred at both slower and faster presentation rates (1.5 words per
second and two words per second, respectively), form-based
prediction only occurred at the slower rate. Given that typical adults
read three to five words per second (Brysbaert, 2019) and speak at a
rate of about three to four words per second (Tauroza & Allison,
1990), many theorists have concluded that form-based prediction is
unlikely to occur in most ordinary language comprehension contexts
(Freunberger & Roehm, 2016, 2017; Indefrey & Levelt, 2004; Ito
et al., 2016; Pickering & Garrod, 2007). This conclusion, however,
has been challenged by reading studies that do find evidence of
form-based prediction at rates of two words per second (DeLong
etal., 2019; Kim & Lai, 2012; Laszlo & Federmeier, 2009) or even
four words per second (DeLong et al., 2021). But critically, in all
four of these studies, the target word was always highly predictable
(unlike the manipulation of predictability in Ito et al., 2016). One
possibility is that all of these additional constraints might facilitate
prediction—but we postpone further discussion of these findings
until the General Discussion.

To the best of our knowledge, there has been no work that directly
explores whether form-based prediction persists in a rich discourse
context where the primary goal is comprehension. A richer discourse
could facilitate prediction by introducing stronger constraints that
unfold gradually over time, ensuring that the relevant lexical items are
highly active long before the word itself is uttered. Alternatively,
natural discourse may well be more variable than typical psycholin-
guistic stimuli, making prediction more complex and potentially less
advantageous. After all, we usually speak because we have something
new and potentially unexpected to convey.

The Present Study

To explore the degree to which form-based prediction occurs in
naturalistic contexts, we used a novel comprehension task called the
Storytime paradigm (Yacovone et al., 2021; Levari & Snedeker,
2024). Rather than using hundreds of unrelated sentences as stimuli,
this paradigm uses coherent, naturally produced stories. These
stories can be presented intact in a correlational design that explores
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how naturally occurring variation affects the ERP signals at each
word (Brennan et al., 2016; Brennan & Hale, 2019; Levari &
Snedeker, 2024; Li et al., 2021), or alternatively, we can use these
stories as a substrate into which experimental manipulations are
spliced (Yacovone et al., 2021).

In the present study, we adopt the latter approach and splice in
manipulations that resemble those from the form-based prediction
studies described above: Participants will occasionally hear
nonwords with varying degrees of similarity to the original word
from the story (e.g., ceke when the original word is cake). Unlike
prior studies, however, we did not include a condition in which the
nonword shares no features with the target (e.g., font when the
original word is cake) because we did not want to completely disrupt
the flow of the story. Instead, we compared the highly similar
nonwords (ceke) with nonwords that have a different onset but the
same rime (e.g., vake when the original word is cake). These rime
conditions are similar to those in Van Petten et al. (1999). Finally,
like Ito et al. (2016), we wanted to investigate form-based prediction
in both predictable and unpredictable environments, which we
identified using the cloze procedures described below. Thus, our
experiment had a factorial design with three word types (cake, ceke,
vake) in two predictive contexts (predictable, unpredictable).

Given the design of our study, we predicted that there will be a
reduction in the N400 for similar nonwords (ceke) relative to the
less-similar nonwords (vake) in the most predictable contexts. In
the less predictable contexts, there should be no differences between
the N400s for the two nonwords. This data pattern would provide
strong evidence that form representations were preactivated in the
predictable contexts, leading to easier processing of the form-similar
nonword after being encountered in the input. Such evidence would
also support the idea that form-based prediction does occur during
naturalistic listening tasks.

In addition to our main prediction, we also had a set of general
expectations and secondary predictions about other data patterns
that may emerge: First, for non-manipulated baseline words (cake),
the N400 responses should become smaller as the predictability of
the words increase—that is, predictable words should have more
positive N400 responses than unpredictable ones. This is because
the N400 is inversely correlated with the predictability of a word
given its context (Kutas et al., 2019; Kutas & Hillyard, 1984).
Second, the N400 effects in the more predictable contexts may
emerge earlier than those in less predictable ones (e.g., Brothers et al.,
2015). Finally, we anticipated that the P600 responses to nonwords
would be larger in higher constraint relative to lower constraint
contexts (Gunter et al., 2000; Ito et al., 2016; Kuperberg et al., 2020;
Vissers et al., 2006).

Method
Participants

We recruited 38 native English-speaking adults from the Greater
Boston area. Four adults self-reported speaking a non-American
dialect of English (British English). All participants provided
consent and received two study credits or cash payment for
their time. We excluded eight participants from our final analyses
following our preregistered exclusion criteria: three for having more
than 25% trial loss after data processing, four for poor attention to
the task (e.g., falling asleep), and one for researcher error. After

these exclusions, we had 30 participants for our final analyses.
Participants also completed a modified version of the Language
Experience and Proficiency Questionnaire (see Kaushanskaya et al.,
2020) in which they reported information about their language
background, as well as other demographics such as age (mean age =
22 years, range = 1640 years) and gender ( female = 18, male = 10,
nonbinary = 2).

Stimuli

The present study used a novel EEG task called the Storytime
paradigm, which involves taking naturally produced stories and
splicing in carefully controlled experimental manipulations (see
Yacovone et al., 2021). Specifically, we used an abridged version of
a children’s book called Mystery of the Turtle Snatcher by Kyla
Steinkraus as the substrate for our experimental design. We also
created a cartoon for this story, which participants watched while
listening to the story narration. To preview our design, we selected
180 target words within the story to create a 2 X 3 manipulation of
predictability and word type. First, we selected target words with
high or low predictability given their preceding story contexts (as
determined by a cloze probability task). Predictable target words
had higher cloze probabilities, whereas unpredictable target words
had lower cloze probabilities. Then, we created three alternative
productions for each target word: the original word, a form-similar
nonword, or a less-similar rime nonword. This resulted in the six
conditions shown below in Table 1. In the remainder of this section,
we provide additional details about how these words were selected
and how the audio and cartoon stimuli were created.

Selecting Our Story Substrate

We selected Mystery of the Turtle Snatcher for two reasons: First,
we plan to conduct a parallel experiment with young children. Thus,
we needed a story with age-appropriate language and a simple,
child-friendly plot. Second, we wanted to use a story that participants
were unlikely to be familiar with so that the cloze probability
measures would reflect the predictability of the target words given the
discourse context rather than prior knowledge of the story itself.
Because the original story was too long to present in a single EEG
recording session, we created an abridged version by eliminating

Table 1
Example Sentences From the Story

Condition Example sentence

High cloze, Baseline These hairs prove you were at the scene of the
crime [krarm].

These hairs prove you were at the scene of the
crame [kremm].

These hairs prove you were at the scene of the
nime [narm].

They are only found in a certain river [rivar]
in Texas.

They are only found in a certain ruver [ravar]
in Texas.

They are only found in a certain piver [piver]
in Texas.

High cloze, Similar
High cloze, Rime
Low cloze, Baseline
Low cloze, Similar

Low cloze, Rime
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some nonessential passages. This version was roughly 30 min when
read aloud.

Assessing the Predictability of Our Story

To find predictable and unpredictable words for our study, we
conducted a cloze task (e.g., Taylor, 1953) in which we determined
the predictability of every word in our story. Specifically, we recruited
541 participants on Amazon Mechanical Turk (https://www.mturk.co
m) and asked them to complete sentences from the story by guessing
each word, one after another (e.g., The ..., The cat ..., The cat was
..., The cat was hungry). Participants guessed around 300 words from
a single section of the story and read the remainder of the text sentence-
by-sentence. Occasionally, participants would see illustrations from
the original chapter book. We excluded 91 participants for failing data
quality checks, resulting in 450 participants in the final sample. After
these exclusions, we had 30 observations for each word in the story,
which we used to calculate cloze probabilities.

In the present study, we define a word’s cloze probability as the
proportion of trials in which participants correctly guessed that
word—for example, if 30 participants provided a guess for the word
and 27 participants guessed it correctly, that word would have a
cloze probability of 90% (i.e., 27 of 30) given its preceding context.
This approach, however, is slightly different from approaches that
use cloze tasks to characterize whether participants converge on any
word given the context. One could imagine a situation in which the
context is highly constraining but leads participants to guess a word
that was not actually used in the story itself. For example, the
sentence “I like my coffee with cream and cinnamon” is apt to be
completed with sugar instead of cinnamon. Thus, cinnamon would
be a low cloze word in a highly constraining context. In the present
study, however, cloze and constraint were categorically linked, as
the degree of constraint for high cloze items (mean constraint =
81.2%, SE = 1.8%) and low cloze items (mean constraint = 44%,
SE =1.8%) significantly differed (b = —0.37, SE=0.03, = —14.21,
p < .001).

Selecting the Target Words

To select our target words, we first calculated the cloze
probabilities for all common nouns in the story. Then, we sorted
these nouns from highest to lowest cloze and removed all nouns that
started with vowel sounds (because we could only create the rime
condition in a consistent way if the target word began with a
consonant). We also removed words from the list if they appeared in
the same sentence as another noun that had a more optimal cloze
probability (i.e., higher for predictable targets or lower for
unpredictable targets). Next, we removed the additional tokens of
nouns that occurred more than three times in the story (e.g., turtle) to
ensure that participants never heard the same manipulation more
than once. In choosing which tokens of a given noun to keep, we
preferentially selected those with the most extreme cloze values
(either high or low). Finally, we had to remove nouns that could not
be changed into nonwords following the process described below.
For example, pan could not be turned into a form-similar nonword
by changing the first vowel because all possible candidates are in
fact real words (e.g., pawn, pain, pin, pen). After all of these
exclusions, we selected the top 90 words for the high cloze targets
and the bottom 90 words for the low cloze targets. The high cloze

targets had an average cloze probability of 81.2% (SD = 14.2%,
range = 53%—100%), and the low cloze targets had an average
of 7.2% (SD = 13.8%, range = 0%—50%).> We also characterized
the lexical frequency of our target words and their duration in
milliseconds. To do this, we collected standardized word frequencies
(per million words) from the SUBTLEXys corpus (Brysbaert & New,
2009), which contains roughly 51 million words from American
English subtitles between 1990 and 2007. Note, however, two low
cloze target words did not appear in the SUBTLEXyg corpus
(whiteboard, hatchlings). There were no significant differences
between the frequency of the high cloze (mean frequency = 200.37,
SD =1352.66) and low cloze (mean frequency = 123.65,SD =361.23)
conditions, #(175.62) = 1.43, p = .15. For word duration, we
ascertained the length of the target words in milliseconds using the
Gentle forced aligner (Ochshorn & Hawkins, 2016). There were
no significant differences between the duration in ms of the high
cloze (mean duration = 508.9, SD = 0.14) and the low cloze (mean
duration = 509.4, SD = 0.28) baseline conditions, #(127.97) =
-0.02, p = .99.

Creating the Nonword Violations

We created three conditions for each of the 180 final target words:
the original word, the form-similar nonword, and the less-similar
rime nonword. The original word was the intended target word from
the story. To create the form-similar nonword, we changed the first
vowel sound of each target word, ensuring that the vowel change did
not result in another word of English (e.g., nap [n@p] became nupe
[nup] and not nip [nip]). Some of these changes, however, may have
resulted in extremely low frequency words (e.g., beal) or words from
non-American dialects of English (e.g., lud, mooth). To create the
rime nonwords, we changed the first consonant of each target word
(e.g., cage became nage). We wanted the consonant change to be
maximally different—so, we implemented changes on three dimen-
sions: place of articulation, manner of articulation, and voicing. For
example, the [k] in cage is a voiceless, velar stop, whereas the [r] in
nage is a voiced, alveolar nasal.

We also used the Irvine Phonotactic Online Dictionary (Vaden
et al., 2009) to calculate the unstressed phonological neighborhood
density for all baseline targets and their nonword manipulations.
We then tested for statistical differences between all of the critical
pairwise comparisons. Importantly, we did not find any significant
differences between conditions with respect to their phonological
neighborhood densities (see our analysis code on the Open Science
Framework [OSF]: https://osf.io/upjc4/).

3 We also conducted an auditory cloze task in which a new set of 45
English-speaking adults watched the cartoon narration (further described in
Stimuli section) and then guessed a subset of our target words. Thus, we were
able to collect and compare spoken and written cloze probabilities for all 180
target words in the present study. We observed a strong correlation between
the cloze values ascertained from the written and spoken cloze tasks, which
was statistically confirmed via a Spearman’s rank order correlation, r,(178) =
.78, p < .001. Overall, the target words had slightly higher cloze value
scores in the spoken cartoon task (mean cloze = 53.2%, median cloze =
63.6%, SD = 39.1%) than in the written task (mean cloze = 44.2%, median
cloze = 51.7%, SD = 39.7%), as indicated by a paired-samples Wilcoxon
signed rank test, z = —4.84, p < .001, 95% CI [-0.12, —0.05]. For additional
details and group comparisons, see our additional online materials on OSF
(https://osf.io/upjcd/).
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Creating the Spliced Recordings and Cartoon Stimulus

After constructing all 540 target sentences (180 total target words X
3 word types), the first author, who is a native English speaker,
recorded the materials. First, he recorded the 30-min story in its
entirety. We used this story as the substrate into which we spliced our
manipulations. Next, he recorded the 540 target sentences in isolation,
making sure to replicate (to the best of his ability) the intonational and
prosodic contours of the original recording. We then extracted the
critical target words from these isolated sentence recordings and
spliced them into the base recording. In some sentences, we needed to
extract a few words before and/or after the target word to avoid issues
with coarticulation and prosody when splicing.

This splicing procedure ensured two properties of our stimuli:
First, all conditions, regardless of being a nonword or the intended
word, had been spliced in from a different audio file; and second, the
auditory context before and after the target word (or region) was held
constant across experimental lists. We constructed three experi-
mental lists using a pseudo-Latin Square design, ensuring that no
two target words from the same condition appeared back-to-back.
We also ensured that all repeated target words appeared in different
conditions in each list. To meet these criteria, we needed to have a
slight difference in the number of observations per cell in each list.
For example, one list had the following distribution: for high cloze
targets, 27 baseline words (cake), 30 form-similar nonwords (ceke),
and 33 rime nonwords (vake); for low cloze targets, 33 baseline
words, 27 form-similar nonwords, and 30 rime nonwords.

To encourage participants to pay attention to the story, we created
acartoon to accompany it. Examples of stills from the cartoon can be
found in Figure 1. The cartoon was created using Vyond software

Figure 1
Stills Taken From our Cartoon Stimulus

Note.

(https://Vyond.com), and the first author was unaware of which
target words would be selected from the story at the time of making
the cartoon. Thus, we did not design the cartoon to alter the
predictability of the target words.

In the Storytime paradigm, we do not construct specific sentences to
serve as fillers. Instead, we rely on the sentences in the text that have
not been manipulated to serve the functions of fillers (e.g., making the
manipulations less predictable and reinforcing the expectation that
most sentences do not have errors). Our story had around 500
sentences, and 180 of them contained target words. Thus, there was a
ratio of roughly 2:1 between fillers and targets. Moreover, only two
thirds of the target sentences contained a violation, making the ratio of
correct-to-incorrect sentences 3.5:1. The stimulus onset asynchrony,
which represents the amount of time from the onset of one target to the
onset of the next, was 10.25 s on average (range = 1.33-47.81, SD =
8.62). To estimate the speech rate, we divided the total number of
words in our story by the total amount of time spent speaking (i.e., the
total phonation time). Specifically, we had 4,634 words in our story
and an average phonation time of 1,427.32 s, as calculated by a
PRAAT script from de Jong and Wempe (2009). We found that, on
average, our three story versions were produced with an average
speech rate of 3.25 words/s.

Procedure
Experimental Setup

Participants listened to the story while watching the cartoon in
a single 30-min EEG recording session. The cartoon was presented
using PsychoPy (Peirce et al., 2019). Participants sat roughly 100

This cartoon was presented alongside the story narration to promote attention to and understanding of the discourse

context. The full cartoon video is available on our OSF page (https://osf.io/upjc4/). See the online article for the color version of

this figure.
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cm from a TV monitor, and they were encouraged to minimize
movement and to keep their faces relaxed.

EEG Recording

Participants were fitted with an electrode cap (actiCAP SnapCap)
containing 31 active Ag/AgCl electrodes that were connected to the
EEG equipment, Brainvision’s actiCHamp Standard 64 System. Two
external mastoid electrodes (TP9 and TP10) were placed directly
behind participants’ ears. The EEG data were recorded at a sampling
rate of 500 Hz using Brainvision’s Recorder (BrainVision Recorder,
Version 1.23.0001, Brain Products GmbH, Gilching, Germany). On
average, electrode impedances were kept below 20 kQ. During
recording, the ground electrode was FPz, and the reference electrode
was FP1.

Data Preprocessing Steps and Data Exclusion Criteria

We used the EEGLAB (Delorme & Makeig, 2004) and ERPLAB
(Lopez-Calderon & Luck, 2014) toolboxes in MATLAB (The
MathWorks Inc., 2022) to preprocess the EEG data. Our procedure
for preprocessing is as follows: First, we re-referenced the data to the
average of the left and right mastoid electrodes. Then, we applied a
high-pass filter of 0.1 Hz and downsampled the data from 500 to 200
Hz. Next, we extracted 2,000 ms epochs from the continuous data
between —500 and 1,500 ms relative to stimulus onset (without
baselining). We then conducted an independent component analysis
with these epochs in order to identify and correct EEG artifacts
(including blinks and horizontal eye movements). Independent
component analysis components were classified using ICLabel
(Pion-Tonachini et al., 2019) and then corrected if they received at
least 75% probability of belonging to the following artifact groups:
muscle, eye, heart, line noise, or channel noise. Then, we extracted
our target epochs from —200 to 1,500 ms with a 200 ms pre-stimulus
baseline. These epochs were subjected to an automatic artifact
rejection procedure, which removed trials with voltages exceeding
+100 pV. If necessary, electrode channels with greater than
5% trial loss were interpolated; however, we never interpolated
more than 10 channels for a single participant. In fact, we only
interpolated 19 channels in total and, on average, less than one
channel per participant (range = 0-8 interpolated channels per
participant). Of these interpolated channels, only two were used in
our final analyses. Finally, we applied a low-pass filter of 30 Hz.

All participants with more than 25% of their trials rejected
after these cleaning procedures were excluded, and their data
were replaced. On average, we rejected 4.75% of participants’ total
trials (SD = 5.29%, range = 0%—22.8%), and we only had to reject
eight participants: three for data loss, four for failing to attend to the
task (e.g., falling asleep), and one for researcher error.

Statistical Analyses
Determining Our Regions of Interest

To determine our spatial regions of interest (ROIs), we relied
on information from the prior literature and our own pilot data. For
N400 effects, we selected a centroparietal ROI with eight
electrodes: Cz, C3, C4, CP1, CP2, Pz, P3, and P4. For P600
effects, we selected a parietal ROI with three electrodes: Pz, P3,
and P4. To determine our temporal ROIs, we used a collapsed

localizer technique in which all the conditions being compared
were collapsed into one grand average waveform, which was then
used to determine the ROI (for discussion, see Luck & Gaspelin,
2017). Researchers vary in how they use the grand average—some
rely on visual inspection, some conduct cluster-mass permutation
tests on these averages, and some select a time window based on the
highest peak within a window (Luck, 2014; Luck & Gaspelin,
2017). We used this last approach. Specifically, we used a 200 ms
time window centered on the most negative peak (for N400 effects)
and the most positive peak (for P600 effects) in the grand average
waveforms.

For analyses that directly compared high cloze and low cloze
conditions, we defined two temporal ROIs, creating a grand
average for each cloze condition but still collapsing across word
type. This is because prior work has shown that predictability can
influence the timing of ERP effects (Kutas & Federmeier, 2011;
Swaab et al., 2012). For example, N400 effects can emerge earlier for
words in predictable contexts relative to unpredictable ones (Brothers
et al., 2015).

Linear Mixed-Effects Model Specifications

All linear mixed-effects models were implemented using the Ime4
(v. 1.1-31, Bates et al., 2014) and afex (v.1.2-1, Singmann et al., 2023)
packagesin R (v. 4.2.2, R Core Team, 2022). All pairwise comparisons
were implemented using the emmeans package (v. 1.8.4-1, Lenth,
2024). We initially fit our models with the maximal random effects
structures justified by our data. If we encountered convergence issues,
we simplified the random effects structure until the models properly
converged (Baayen et al., 2008; Barr, 2021). Most issues were resolved
by constraining the covariance parameters for the random effects to
zero (i.e., removing the correlations between them). But, if this step did
not resolve the issues, we began to incrementally drop random slopes
(while trying to preserve the slopes for the highest order effects of
interest) until the models converged. All effects with an absolute value
of ¢ greater than 2 are considered significant (Gelman & Hill, 2006).
We follow this convention due to the uncertainty in the field about how
to best calculate the appropriate degrees of freedom in linear mixed-
effects models (Baayen et al., 2008). But for the sake of completeness,
we also report the p values as calculated by the ImerTest package (v.
3.1-3, Kuznetsova et al., 2017). Note that in all models, both methods
of evaluating significance arrived at the same conclusions.

Outline of Our Analyses

For the present study, we preregistered a set of primary and
secondary hypotheses. In the Results and Discussion section, we
report the findings from five linear mixed-effects models that
aimed to test those hypotheses.* First, we tested whether the N400s
to form-similar nonwords (ceke) were reduced relative to less-
similar nonwords (vake) in high but not low cloze contexts.

*The analyses reported in the Results and Discussion section slightly
differ from those in our preregistration due to recommendations that we
received during an external review of this work. The main difference between
them is that the preregistered analyses modeled by-participant or by-item
ERP averages whereas the reported analyses modeled trial-level ERPs. A full
comparison of these two analytical approaches can be found in the additional
online materials on OSF (https://osf.io/upjc4/). Critically, both approaches
resulted in the same patterns of findings.
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Second, we tested whether our P600 effects were sensitive to
predictability and word type. Third, we investigated our secondary
hypotheses about item-level differences in our ERP effects. To do
this, we first analyzed how our N400 responses changed as a
function of a word’s predictability, i.e., did baseline N400s show
an inverse linear relationship with cloze probability? Then, we
conducted a set of parallel analyses for our P600 effects. The
results of these analyses are briefly discussed in the following
section, as well as more thoroughly in the General Discussion.

Transparency and Openness
Data, Analysis Code, and Research Materials

The preregistration for this study, as well as all of the data,
analysis scripts, and research materials are available on our OSF
page (https://osf.io/upjc4/; Yacovone et al., 2024). We analyzed our
data using the R statistical computing environment (v. 4.2.2, R Core
Team, 2022). Data visualizations were created using EEGLAB
(Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck,
2014) toolboxes in MATLAB (The MathWorks Inc., 2022) and the
ggplot package in R (v. 3.4.2, Wickham, 2016).

Sample Size Calculation and Power Analysis

A priori power analyses were conducted using the mixedpower
package in R (Kumle et al., 2021; R Core Team, 2022). This package
uses a simulation-based approach to estimate the power for each effect
of interest across a range of sample sizes. To determine our optimal
sample size, we first collected data from 30 pilot participants. Then,
we implemented a set of mixed-effects models outlined in our
preregistration. We found that the subtlest, reliable effects in our pilot
data were the interaction terms. Thus, we wanted to determine the
number of participants needed to achieve at least 80% power for all
relevant interaction effects with a = .05.

For ease of computation, we dropped the random slopes in our
simulations. In addition, we did not want model convergence issues
to contribute inaccurate model estimates into the simulated distribution
of effect sizes. To account for dropping slopes (and to be more
conservative with our power calculations), we also implemented a
smallest effect sizes of interest approach by reducing our observed
effect sizes by 20% and then calculating the sample size necessary to
achieve 80% power for these smallest effect sizes of interests (see
Kumle et al., 2021). Results indicated that we needed a final sample
size of 30 participants.

Results and Discussion

In Figure 2, we present the grand average waveforms from all
centroparietal electrodes (Cz, C3, C4, CP1, CP2, Pz, P3, P4) for
each word type in both cloze conditions. These waveforms were
calculated by first collapsing across items to get six waveforms for
each participant and then collapsing across those by-participant
averages. Visual inspection shows robust N400 and P600 effects for
all violation conditions, regardless of predictability. Critically, in the
high cloze condition, the N400 effect is reduced for the form-similar
nonwords (ceke) relative to the less-similar rime nonwords (vake)
across all electrodes (see Figure 2, top panel). In contrast, in the low
cloze condition, there is no evidence of a reduction for the form-
similar nonwords (see Figure 2, bottom panel). Finally, for the

baseline conditions (cake), the N40O responses are smaller for high
cloze words than for low cloze words, as predicted.

In Figure 3, we present the topographic maps for the effects of our
form-similar and rime manipulations. In high cloze contexts, the
reduced N400 for form-similar nonwords can be seen as a weaker
negative effect in the 400 ms and 600 ms time windows relative to
the rime condition (see Figure 3, top panel). Both violations in high
cloze conditions also produced large P600s that were similar in
magnitude and latency (see 1,000 ms and 1,200 ms). For low cloze
contexts, both violations seemed to elicit similar N400 and P600
effects (see Figure 3, bottom panel). In addition, the N40O0 effects for
the high cloze conditions emerged slightly earlier than those in the
low cloze conditions, as predicted.

Are N400 Effects Reduced for Form-Similar Errors in
Predictable Contexts?

To demonstrate form-based prediction, we would need to show a
significant reduction in N400 effects for form-similar nonwords
(relative to the less-similar rime nonwords), but only when participants
are actually able to predict the original word from the story. Figure 2
provides initial evidence that form-based prediction is occurring, as
ceke evoked smaller N40O responses than vake in high cloze but not
low cloze conditions. To confirm that these differences are statistically
reliable, we first calculated mean N400 responses by averaging the
amplitudes from our preregistered centroparietal electrodes in the time
windows identified by the localizers. These localized time windows
were 420-620 ms and 430-630 ms for high and low cloze words,
respectively. We then modeled these mean N400 responses using a
linear mixed-effects model. This model had fixed effects of word type
(cake, ceke, vake) and predictability (high cloze, low cloze), as well as
their interaction. For word type, we used contrast coding to test for
successive differences between cake and ceke and then between ceke
and vake. For predictability, we used contrast coding to test for
differences between high and low cloze conditions (high cloze = —.5,
low cloze = .5).” The remaining pairwise comparisons were tested (and
corrected for multiplicity) using the emmeans package (Lenth, 2024).
Finally, this model had random intercepts and maximal slopes for
participants and items. To reach convergence, we constrained the
covariance parameters for the random effects to zero (see Baayen et al.,
2008; Barr, 2021).

Results indicated a significant main effect for the word type
contrast between cake and ceke (b = —1.61, SE = .40, t = —4.01,
p < .001). There were no main effects for the contrast between
ceke and vake (b = —0.67, SE = .36, t = —1.89, p = .067) nor
predictability (b = 0.51, SE = 42, t = 1.22, p = .23). There was,
however, a significant interaction between word type and predict-
ability, but only for the contrast between the two nonwords, ceke and
vake (b = —1.52, SE = 71, t = =2.15, p = .033).° To unpack this

> We also implemented a parallel model with z-scored control predictors of
lexical frequency, word duration, and phonological neighborhood density.
Critically, the patterns of significance remained the same.

®We also conducted a parallel analysis using a more traditional time
window of 300-500 ms for both high and low cloze conditions, as well as
controlling for lexical factors such as frequency, word duration, and
phonological neighborhood density. Both analyses resulted in the same
pattern of significance—and moreover, the model estimate and ¢ value for
the critical interaction between ceke and vake increased (b = —1.92, SE =
0.66, t = =2.91, p = .004).
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Figure 2
Grand Average ERP Waveforms by Word Type and Cloze Condition
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The grand average waveforms (uV) for the centroparietal electrodes of interest are presented for both high cloze (top panel) and low cloze

(bottom panel) conditions. The black lines represent the baseline condition (cake), while the red and blue lines represent the form-similar (ceke)
and rime (vake) conditions, respectively. All waveforms were subjected to an additional low-pass filter of 15 Hz for plotting purposes. ERP =
event-related potential. See the online article for the color version of this figure.
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Figure 3
Topographic Maps of the ERP Effects by Cloze Condition
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These topographic maps depict the isolated effects of the form-similar (ceke) and rime (vake) nonwords in both predictable (high cloze,

top panel) and unpredictable (low cloze, bottom panel) contexts. These effects are calculated by subtracting the baseline ERP activity from the
activity evoked by each violation. ERP = event-related potential. See the online article for the color version of this figure.

interaction, we conducted planned pairwise comparisons within
predictability conditions, which revealed that the N400 responses for
ceke were significantly smaller than those for vake in the high cloze
condition (b = 1.43, SE = .50, r = 2.85, Tukey-adjusted p = .016) but
notin the low cloze condition (b = —0.08, SE = .50, = —0.17, Tukey-
adjusted p = .98). All of the remaining pairwise comparisons within
predictability groups were significant.

These results confirmed that there were robust N400 effects for
all error types across both high and low cloze words, however, the
N400 effects for ceke were only significantly smaller than those for
vake in high cloze environments. In contrast, there was no reduction
in the N400 effects for ceke in the low cloze environments, which
suggests that participants were unable to predict the form of the
original word in those less predictable contexts.

Are P600 Effects Different Across Error Type and
Predictability?

To determine whether P600 effects are sensitive to error type and
predictability, we followed a similar procedure to the one outlined
above: First, we calculated mean P600 amplitudes from our
preregistered parietal electrodes in the time windows from the
localizers. Those time windows were 1,085-1,285 ms and 1,160—
1,360 ms for high and low cloze, respectively. Then, we implemented
a linear mixed-effects model using the same fixed effects of word type
(cake, ceke, vake), predictability (high cloze, low cloze), and their

interaction. For word type, we used contrast coding to test for
differences between cake and ceke and then between cake and vake.
Note, this last comparison is different from the one used in the N400
analysis above, reflecting a difference in the hypothesis being tested.
For predictability, we again compared the two cloze conditions (high
cloze = —.5, low cloze = .5). Finally, this model had random intercepts
and maximal slopes for participants and items. To reach convergence,
we constrained the covariance parameters for the random effects
to zero.

Results indicated main effects for both word type contrasts,
confirming the robust P600 effects seen in Figures 2 and 3 for both
ceke (b = 1.81, SE = 44, t = 4.15, p < .001) and vake conditions
(b=2.08,SE = .41,t=5.07, p <.001). There were no main effects
of predictability (b = —0.58, SE = .56, t = —1.04, p = .30) nor any
interactions, suggesting that the observed differences in magnitude
across high and low cloze conditions were not statistically reliable.
We return to this point in the General Discussion.

Do N400s and P600s Vary Continuously With
Word-Level Predictability?

In addition to our primary analyses, we also preregistered a set of
secondary analyses that explore whether word-level predictability
modulates our observed effects. In the first analysis, we sought to
replicate the finding that N40O responses to nonmanipulated words
(cake) are inversely correlated with the predictability of that word



publishers.

and is not to be disseminated broadly.

yrighted by the American Psychological Association or one of its allied

This document is cop
This article is intended solely for the personal use of the individual user

FORM-BASED PREDICTION IN STORYTELLING CONTEXTS 13

given its particular context (Kutas et al., 2019; Kutas & Hillyard,
1984). In the second analysis, we explored how the N400 responses
to our violations changed as a function of the original word’s
predictability. For example, does the N40O reduction for ceke increase
linearly with predictability (similar to the N40O reduction for cake)?
In the final analysis, we investigated parallel questions about the
relationship between P600s and word-level predictability.

Before addressing these questions, we first visualized how our
grand average waveforms changed across cloze probability by
categorizing items into one of three bins: lowest cloze, middle cloze,
and highest cloze (see Figure 4). To create these waveforms, we first
averaged across participants to get three waveforms per item.
Then, we averaged across these by-item averages within the same
cloze bin. Figure 4 provides some insight into our three secondary
hypotheses above: First, with respect to the baseline conditions, the
N400 responses become less negative across the cloze bins. Second,
the reduction in N400 responses for ceke becomes more robust as
predictability increases. Interestingly, the size of the N400 response to
vake seems to slightly increase across predictability, moving in the
opposite direction of the form-similar effect. Finally, the magnitude of
the P600 effects appears to be similar across error types and across
cloze bins, supporting our findings from the primary analyses above.

Do Baseline N400s Become Smaller as Predictability
Increases?

It is well-documented that the N400 responses to nonmanipulated
baseline words become smaller (or more positive) as a function of
the word’s predictability in its particular context (Kutas et al., 2019;
Kutas & Hillyard, 1984). Our design allows us to investigate

whether this data pattern is present in naturalistic contexts and with
stimuli that contain frequent violations. To do this, we modeled the
trial-level data from above using a linear mixed-effects model with
a single continuous fixed effect of cloze probability. For random
effects, the model had random intercepts for both participants and
items (as justified by the data). Results confirmed a significant effect
of cloze probability such that the N400 amplitude for baseline words
becomes more positive as predictability increases (b = 1.78, SE = .76,
t = 2.33, p = .021). Figure 5 below shows the change in N400
amplitudes across cloze probability values for all word types.

How Do the N400s to Both Error Types Change Across
Predictability?

Next, we wanted to investigate how predictability modulates the
size of the N400 for the form-similar (ceke) and rime (vake)
nonwords. To do this, we originally planned to isolate the effects by
calculating difference waves, i.e., by subtracting the baseline (cake)
from both error conditions as in Figure 3. However, in constructing
these difference waves, we realized that the substantial effect of
cloze on the baseline condition makes it difficult to interpret this
analysis in isolation. So, although this approach deviates slightly
from our preregistration, we thought it would be informative to test
all word types in a single linear mixed-effects model to quantify their
similarity. Specifically, we implemented a new model with fixed
effects of word type (cake, ceke, vake), word-level cloze probability
(continuous 0%-100%, mean-centered at 44%), and their interac-
tion. As in the primary models, we used contrast coding to test for
successive differences between cake and ceke and then between ceke

Figure 4
Visualization of the ERP Effects Across Cloze Probability Bins
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Note. The grand average waveforms (V) are plotted in three cloze probability bins, increasing in predictability from left to right. The black lines represent the
baseline condition (cake), and the red and blue lines represent the form-similar (ceke) and rime (vake) conditions, respectively. These waveforms were
produced in R and then smoothed using local regression (loess) smoothing techniques. ERP = event-related potential. See the online article for the color version
of this figure.
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Figure 5
Visualization of N400 Amplitudes Across Cloze Probability for Each Word Type
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baseline condition (cake), and the red and blue lines represent the form-similar (ceke) and rime (vake) conditions, respectively. Each dot
represents the average N400 amplitude (uV) for each item (180 Items X 3 Word Types = 540 observations). We collapsed across participants for
plotting purposes, but we preserved the participant and item-level structures in our statistical analyses. See the online article for the color version

of this figure.

and vake. For random effects, the model converged with random
intercepts and maximal slopes for participants and items.

Results indicated a significant effect between cake and ceke
(b=-1.61,SE =.39,t=-4.10, p < .001), as well as a significant
interaction between word type and cloze probability for the contrast
between ceke and vake (b = —1.81, SE = .90, t = —2.02, p = .045).
To follow up on this interaction, we estimated the slopes for each
word type individually using the emtrends function (see Lenth,
2024). For cake, we found identical results to the analysis above.
For the two error conditions, the slopes did not reach statistical
significance—although ceke was estimated to become slightly more
positive across cloze (b = 1.34, SE=.71,t=1.89, p = .06), whereas
vake was estimated to become slightly more negative (b = —0.47,
SE =.76,t=—0.62, p = .54). These findings tentatively suggest that
cake and ceke experience similar degrees of N400 reduction as word-
level predictability increases. Figure 5 shows the relative changes in
N400 amplitudes for each word type across cloze probability.

How Do the P600s to Both Error Types Change Across
Predictability?

We conducted parallel analyses on our P600 effects; however,
none of these analyses revealed any significant insights. Specifically,
across all of the analyses above, we found robust P600 effects for both
violations, with no differences in magnitude between them. Moreover,
we found no effects of predictability nor any interactions between
predictability and word type. But, as we mentioned earlier, the cloze
probability of a target word is not necessarily indicative of the
constraint of the target sentence. For example, in the introduction, we
demonstrated this point using the sentence “I like my coffee with
cream and cinnamon.” This particular sentence is apt to be completed

with sugar instead of cinnamon, meaning that cinnamon is a low cloze
completion for this highly constraining context. In the General
Discussion, we present an exploratory analysis of P600 effects in high
constraint contexts with low cloze target words. To foreshadow
these findings, we show robust P600 effects for all high constraint
contexts, regardless of the cloze probability of the target word
from the story. These findings are consistent with the proposal
that P600s reflect the recognition of a conflict or failure to
incorporate the bottom-up input into the comprehenders’ higher
level interpretation of the unfolding context—but only when the
context is sufficiently constraining such that higher level interpre-
tations are actually built (e.g., Brothers et al., 2022; Ito et al., 2016;
Kuperberg, 2007; van de Meerendonk et al., 2010; van Herten
et al., 2005; Vissers et al., 2006).

General Discussion

In the present study, we directly explored whether adults predict
the form of upcoming words while listening to a rich, naturalistic
discourse. To do this, we manipulated a set of target words within a
children’s story such that participants would either hear the original
word from the story (cake), a form-similar nonword (ceke instead
of cake), or a less-similar rime nonword (vake instead of cake). In
highly predictable contexts, we found that form-similar nonwords
(ceke) elicited smaller N40O responses than rime nonwords (vake).
This finding suggests that participants had predicted the form of
the intended word in high cloze conditions, resulting in facilitated
processing of the form-similar nonword. In less predictable contexts,
both kinds of nonwords elicited similarly sized N40O responses. To the
best of our knowledge, these findings are the first to demonstrate
that form-based prediction occurs not only in tightly controlled
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experimental settings but also in contexts that better resemble
everyday comprehension.

In the remainder of this General Discussion, we will do four
things: First, we reconcile our findings with the prior literature
that suggests form-based prediction should not readily occur in
naturalistic comprehension. Second, we explore how our work
relates to prior studies on phonological mismatch effects in spoken
language comprehension. Third, we further examine our P600
effects and integrate our findings with the broader literature on
these posterior positivities. Finally, we discuss several open
questions about form-based prediction and outline potential avenues
for future research on this phenomenon using the Storytime paradigm.

Should Form-Based Prediction Be Expected During
Naturalistic Comprehension?

There is an ongoing debate in the literature about the limits of
form-based prediction and its role in everyday comprehension.
Some researchers argue that, while form-based prediction can occur
in certain experimental contexts, it is unlikely to occur in most
naturalistic settings (Freunberger & Roehm, 2016; Ito et al., 2016;
2017b). Specifically, there are two features that are unusual about
the experimental contexts in which form-based prediction has been
studied:

First, the manipulations that are used in such studies can help
create a context in which making predictions about an upcoming
word is unusually useful for the comprehender. If all the target
sentences contain a highly predictable word, and that word is the one
that is manipulated or replaced, it would make sense to try to
anticipate these words (rather than passively process them) in order
to reconstruct the intended (or original) meaning of the utterance.
Second, in form-based prediction studies, the target sentences are
often presented at slower-than-natural rates, which may provide
comprehenders with more time to process and use the unfolding
words to generate predictions (for discussion, see Ito et al., 2016; but
see DeLong et al., 2021). In the sections below, we ask whether
these two features are also true of the stimuli in the present study. To
foreshadow our results, we do not find any evidence that our story is
particularly slow or predictable. Thus, we end with a proposal about
why form-based prediction was possible in this rich but highly
variable naturalistic context.

How Predictable Was Our Story?

Prior work has found that comprehenders engage in more
predictive processing when they are in highly predictable contexts
(e.g., Brothers et al., 2015; Lau et al., 2013). For example, in a study
by Lau et al. (2013), participants simply read pairs of words and
indicated when they saw the name of an animal. The authors
manipulated these word pairs to either be semantically related to one
another (e.g., salt-PEPPER) or not related at all (e.g., salt“UNCLE).
They also manipulated the overall proportion of trials in which the
word pairs were related: In one experimental block, 50% of the word
pairs were related, so that activating close semantic associates would
be helpful about half of the time. In the other block, only 10% of the
word pairs were related, and thus, participants who activated semantic
associates would be unlikely to correctly predict the second word
given the first. As expected, the authors observed a reduction in the
N400 to words that were preceded by semantically related words

(e.g., salt-PEPPER) relative to words preceded by unrelated
words (e.g., salteUNCLE). Critically, however, this reduction was
greater in the experimental block with a higher proportion of related
trials relative to the block with a lower proportion, demonstrating that
preactivation based on semantic association is greater when semantic
predictability is high.

In the present study, we explored comprehension in the context of
a written narrative that was read aloud. Like most written narratives,
this story had been carefully crafted and edited with the goal of
ensuring that it would be easily understood. Edited language like
this is unnatural and yet pervasive—unnatural in the sense that it is
quite different from the language environment that existed for most
of humans’ evolutionary history, and pervasive in the sense that it
now makes up a sizeable portion of our participants’ linguistic input
on any given day (e.g., podcasts, movies, news broadcasts, articles,
novels, and many social media posts). One might wonder if, on
average, edited text is more predictable than spontaneously produced
language—especially when the edited text is intended for children,
like the story used in the present study.

Fully exploring this question goes beyond the scope of the present
study. Nevertheless, to better understand the scope and generaliz-
ability of our findings, we revisited our cloze data to characterize the
overall predictability of our story. In our original cloze task, each
person would read the story up until they had to guess, and then
they would guess each word in their small section, word-by-word
(e.g., The ..., The cat ..., The cat was ..., The cat was hungry).
Participants saw the correct answer on the screen after making each
guess. For example, a person might have guessed that a sentence
started with The. After guessing, they learn that it started with She,
and so they update their expectations about how the sentence will
unfold and then guess the word went.

This procedure allowed us to collect incremental cloze values
for every word in our 30-min story. Using these values, we
characterized the predictability of all the content words (nouns,
verbs, and adjectives) in our story. Given the design of the present
study, we knew that there would be some words that were highly
predictable and others that were not. The question for this analysis,
however, was how often the content words were highly predictable.
Figure 6 shows the distribution of cloze probabilities for all 1,947
content words in our story. The median cloze value was 6.7% (out of
30 total guesses). There were 639 words (roughly 33% of all words)
that no participant correctly guessed. Thus, even in this simple
edited narrative, most words could not be predicted before they were
encountered.

In light of these findings, we conclude that form-based prediction
can emerge for highly predictable words despite these words
occurring in a broader, more variable environment with generally
unpredictable words. Although we cannot ascertain whether our
story is more or less predictable than other forms of natural language,
we can compare these cloze values with those from the stimuli used in
prior psycholinguistic studies. Prior studies that manipulate predict-
ability typically have the following classification: words with cloze
values under ~10% are low cloze, words with values up to ~65% are
medium cloze, and words with values over 65% are high cloze (Block
& Baldwin, 2010; Brothers & Kuperberg, 2021; Kutas & Hillyard,
1984). By this criterion, the content words in our story were mostly
low cloze (52.2%) with many medium cloze words (31.2%) and a
smaller number of high cloze words (16.6%). The distribution of cloze
values in our stimuli also appears to be broadly similar to the values
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Figure 6
Distribution of Cloze Probabilities for All Nouns, Verbs, and Adjectives in Our Story
NOUN VERB ADJ
300
2
2
2]
© 200
==
£
e
v =
2
S
3
k]
« 100 o
@
e}
£
b=
P4
o -
0.00 025 050 0.75 100 000 025 050 075 100 000 025 050 0.75 100
Cloze probability (out of 30 guesses)
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See the online article for the color version of this figure.

observed in cloze studies using written passages intended for adults
(Lowder et al., 2018; Luke & Christianson, 2016; Smith & Levy,
2013). In sum, these analyses suggest that our story was not unusual in
its degree of predictability, and thus, it is unlikely that the effects we
observed were driven by a strategy that is specific to the materials that
we used.

How Slowly Was Our Story Read?

Most researchers would agree that making top-down predictions
during comprehension takes some amount of time (e.g., DeLLong et
al., 2021; Freunberger & Roehm, 2016; Ito et al., 2016; Pickering &
Gambi, 2018; Pickering & Garrod, 2007). To predict the form of an
upcoming word, comprehenders must do several things: First, they
must perceive the earlier words in an utterance and use them to
make inferences at higher conceptual levels about what is likely to
come next. Then, after making those inferences, they must transmit
information back down to lower levels in order to preactivate (1)
the relevant lexical concepts and (2) the form features associated
with them (in that order). These steps constitute a feedback loop in
which information from the perceived input is propagated to higher
levels and then back down again (Dell, 1986; Pickering &
Garrod, 2007).

Decades of research on incremental processing have provided
insight into how (and when) we should expect to see substantial
effects of feedback loops. First, feedback signals should emerge
gradually over time, becoming stronger as more time passes (Dell,
1986). Second, in a system with hierarchical, multilayered
representations, it should take longer for top-down information to
reach lower levels than higher ones (Elman & McClelland, 1988;

Indefrey & Levelt, 2004; Pickering & Garrod, 2013; Rumelhart &
McClelland, 1982). On this account, we should expect predictions
about upcoming forms to emerge later in time than predictions about
upcoming meanings or concepts, as form-based prediction
requires the same steps as semantic prediction plus the additional
step of preactivating phonological and perceptual features. Taken
together, these insights have generated skepticism about whether
form-based prediction readily occurs during ordinary comprehen-
sion (e.g., Freunberger & Roehm, 2016; Indefrey & Levelt, 2004;
Ito et al., 2016, 2017a; Pickering & Gambi, 2018; Pickering &
Garrod, 2013).

If we assume that comprehenders only begin to predict a
given word in an utterance (the target word) after encountering the
word immediately before it—and if we assume that this prior word
lasts between 200 and 400 ms—then comprehenders only have
a few hundred milliseconds to identify the incoming word,
generate expectations about the next word, and preactivate its
form. There are three reasons for assuming that prediction is
limited to the next word: First, if preactivation serves to facilitate
the perceptual processing of incoming words, it will only be
helpful if that activation is synchronized to the input (i.e.,
preactivating the form features of a word that is not about to be
spoken may do more harm than good); Second, if prediction
extends over several words, mechanisms will be required to bind
the features of a single word and keep the predictions of distinct
words separate; Third, the prior empirical evidence for predictive
processing relies on effects observed either at the target word
(or immediately before it). For a review of contemporary theories
of prediction (with an emphasis on next-word prediction), see
Ryskin and Nieuwland (2023).
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As we noted in the introduction, there is some empirical evidence
to support this claim that form-based prediction takes longer than
prediction about upcoming meanings or concepts. Specifically, Ito
et al. (2016) found reduced N400 responses to unexpected, form-
similar words at a slow presentation rate (1.5 words per second) but
not at a faster one (two words per second). Given that natural
speaking and reading rates are between three and five words per
second (Brysbaert, 2019; Tauroza & Allison, 1990), these findings
suggest that form-based prediction should rarely occur in everyday
contexts.

The stimulus in the present study was an audio recording of a
children’s story that we intend to also use with child participants.
Because child-directed speech is often, but not always, slower than
speech directed to adults (e.g., Biersack et al., 2005; Fernald et al.,
1989; Ratner, 2013), one might wonder whether our story was so
slow that it allowed adults to pursue a predictive strategy that would
not ordinarily be available to them. In an earlier section, we
calculated the average speech rate for our stories to be 3.25 words
per second, which falls within the range of three to five words per
second for natural adult-directed speech (Tauroza & Allison, 1990)
and well within the range for studies of spoken and written language
comprehension in adults (see Dambacher et al., 2012; DeLong et al.,
2019, 2021; Ito et al., 2016; Wlotko & Federmeier, 2015).

Moreover, other studies using similar designs and paradigms to
Ito et al. (2016) have also found strong evidence for form-based
prediction at faster rates (DeLong et al., 2019, 2021; Kim & Lai,
2012; Laszlo & Federmeier, 2009). For example, DeLong et al.
(2021) had adults read sentences word-by-word at a rate of four
words per second. All of their sentences originally had a highly
predictable noun, which they either kept or replaced with an
orthographically similar word, a semantically similar word, or an
unrelated word, e.g., “The Doberman stood its ground and bared its
(teethltenthldentist/report) to the mailman.” The authors found smaller
N400s for the orthographically and semantically similar words relative
to the unrelated words—despite presenting their sentences at nearly
twice the speed of Ito et al. (2016).

Despite this clear pattern of findings, we are inclined to agree with
the skeptics: It seems implausible, given what we know about the
mind, that a listener can identify a word as it unfolds, integrate it into
a higher level discourse structure, make a prediction for the next
word, and preactivate the form of that next word—all in the span of
~300 ms. So, how can we explain the findings from our study, as
well as those from the prior studies that report form-based prediction
at fast presentation rates?

Getting a Head Start on Form-Based Prediction

One way to reconcile these findings with our understanding of the
temporal properties of feedback loops is to assume that form-based
prediction is not typically triggered at the immediately preceding
word. Note, triggering a prediction is not the same as serving as the
basis for that prediction. We still assume that these predictions are
based on the entire context up to that point and not on a singular
word. Instead, the words that appear earlier in the context may be
able to generate or trigger specific lexical expectations that will be
fulfilled several words downstream—we will call this long-distance
prediction. If these long-distance predictions can be made in parallel
with the bottom-up processing of each subsequent word, then such a
system could allow predictions to emerge gradually during

comprehension. In the rest of this section, we review the preliminary
evidence for long-distance prediction and then explore the
degree to which this phenomenon may account for the divergent
findings in prior work. To do this, we investigate whether long-
distance prediction might have been possible for the critical words
in the present study, as well as two prior studies on form-based
prediction.

Preliminary Evidence for Long-Distance Prediction

The clearest evidence for long-distance prediction comes from a
recent study exploring form-based prediction in the visual world
paradigm. X. Li et al. (2022) asked native Mandarin speakers to
look at visual displays while listening to highly constraining
sentences like “After school, I put my pencil case and notebooks
into my schoolbag and get ready to go home.” The visual displays
always contained four objects, positioned in the four quadrants of
the screen. Three of these objects were unrelated distractor objects
that shared no semantic or phonological features with the highly
predictable noun (e.g., schoolbag in the sentence above). The
fourth object was either the highly predictable noun (e.g., a
schoolbag), a semantic competitor (e.g., an eraser), a phonological
competitor (e.g., in Mandarin Chinese, comb and schoolbag have
the same first syllable and tone), or another unrelated distractor
(e.g., funnel).

X. Li et al. (2022) found that participants began looking to the
semantic and phonological competitors (over the distractors) well
before the target word was produced (see also Ito et al., 2018).
Specifically, the authors observed increased looks to both competitors
starting ~1,400 ms (or two words) before the target word onset. This
pattern was interpreted as evidence that form-based predictions were
made well in advance of the target word. To determine whether long-
distance predictions were possible in their sentence contexts, X. Li
et al. (2022) conducted an exploratory cloze task with a different set
of Mandarin speakers. These participants heard the original target
sentences; however, the authors truncated them ~1,400 ms before
the target word. Participants were then asked to complete each of the
truncated sentences. Results indicated that participants included the
target words in their completions at rates well above chance (e.g.,
average target cloze probability was 33% with a range of 20%—45%).
Thus, it is clear that, under some circumstances, listeners can make
predictions about an upcoming word on the basis of information
presented much earlier in the sentence—and moreover, these
predictions can result in the preactivation of form features well
over a second before the predicted word is produced.

Evidence for Long-Distance Prediction in the Present
Study (and Two Prior Studies)

This finding raises the possibility that the reduced N400s in form-
based prediction studies sometimes result from predictive processing
that occurs well before the pretarget word. Specifically, we might
expect that the studies showing form-based prediction at faster
stimulus presentation rates have stimuli that support long-distance
prediction, while the studies showing form-based prediction only at
slow presentation rates may not. To explore this, we revisited the
stimulus sets used in DeLong et al. (2021) and Ito et al. (2016).
DeLong et al. (2021) reported form-based prediction at presentation
rates of four words per second, whereas Ito et al. (2016) found that
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form-based prediction broke down at rates of two words per second.
In addition, we also explored a subset of our target sentences to see if
they provided support for long-distance prediction.

To investigate this systematically, we conducted a set of exploratory
cloze tasks that presented participants with truncated versions of the
high cloze sentences from these three studies (160 high cloze sentences
from DeLong et al., 2021; 88 from Ito et al., 2016; and 25 from the
present study).” For the two reading studies, we presented each target
sentence three times, providing additional context each time. For
example, we first showed participants a truncated sentence that
stopped four words before the target (The lumberjack chopped ... ) and
asked them to complete the sentence. Then, we revealed two words
(The lumberjack chopped the wood ...) and asked for another
completion. Finally, we presented the entire sentence up to the target
word (The lumberjack chopped the wood with his ...) to determine
whether participants could guess the target word ax. For the materials
from the present study, we implemented a similar procedure: The
cartoon would play until reaching four words before the target, and
then it would pause. Participants were instructed to then complete the
current sentence before receiving more context from the story. This
procedure was identical to the one for the two reading studies; thus, we
were able to collect comparable incremental cloze values for these
various high cloze contexts.

Figure 7 shows the by-item cloze probabilities from each study at
the three different distances. In all three studies, participants readily
predicted the target words right before they appeared in the input:
The present study had an average cloze of 92.7% (SD = 16.3%); the
DeLong study had 91.8% (SD = 12.5%); and the Ito study had
88.7% (SD = 16.4%). Long-distance prediction rates, however,
varied across the studies. The target words from the present study
could often be predicted at distances of four words (mean cloze =
39.5%, SD = 29.9%) and two words (mean cloze = 70.3%, SD =
28.0%) before they appeared. The two reading studies showed less
long-distance prediction; however, the target words in both studies
were still predicted at rates above 20% for all distances. The DeL.ong
targets were numerically more predictable across all distances (four
words prior, mean cloze = 23.3%, SD = 30.4%; two words prior,
mean cloze = 51.9%, SD = 35.5%) than the Ito targets (four words
prior, mean cloze = 20.1%, SD = 27.9%; two words prior, mean
cloze = 48.8%, SD = 33.1%); however, we do not believe that this
constitutes a categorical difference in the degree of long-distance
prediction in the two reading studies.®

In short, these findings provide additional evidence for long-
distance prediction, generating a slew of questions about the types of
systems that can generate predictions in advance and maintain them as
more words are being perceived. We suspect that this kind of long-
distance prediction is common in rich naturalistic contexts like our
story. Narratives typically follow characters across events and revisit
the same topics, making it useful to track (at many levels) the ideas,
objects, people, and places that are likely to be mentioned. The cues
that allow us to make these predictions may occur a few words, a few
sentences, or even a few paragraphs in advance of the target word,
allowing for prediction to occur even at quite rapid presentation rates.

How Does the Present Study Relate to Prior Work on
Phonological Mismatch Effects?

In the introduction, we reviewed a handful of studies that
investigated the effects of phonological mismatches during spoken

language comprehension. In these studies, participants listened to
constraining sentences with highly predictable sentence-final
words, e.g., “It was a pleasant surprise to find that the car repair
bill was only 17 dollars.” On some trials, these predictable words
appeared as expected. On other trials, these words were replaced
with semantically incongruous words that either shared the same
initial phonemes with the expected word (dolphins) or did not
(scholars). Across these studies, there are three main findings that
must be reconciled with the present study, each of which we
address below.

First, a handful of studies report early negativities that are argued
to be distinct from the N40O for two reasons: (1) they typically
emerge and peak earlier than canonical N400s (200-300 ms
following the onset of a violation with unexpected initial phonemes)
and (2) there is sometimes an apparent temporal discontinuity
between an early peak and the peak of the N400 (e.g., Connolly &
Phillips, 1994; van den Brink et al., 2001). In the present study, we
did not find an early negativity with a peak that was spatially and
temporally distinct from our N400 responses. This is not terribly
surprising, as auditory ERPs rarely show distinct early effects due to
the variability in how spoken words are produced and how they
unfold over time (Holcomb & Neville, 1991; Kutas et al., 1987,
2006; Kutas & Van Petten, 1994; Swaab et al., 2012). In a
naturalistic stimulus like ours, there is a high level of variability in
the onsets of each word, the prosody of each utterance, and the
timing between each subsequent word. This variability has the
potential to blur together any early effects by increasing noise and
interfering with participants’ abilities to precisely predict when a
word will begin and how it might sound. If we were to use these
materials but tightly control the timing of each spoken word (e.g.,
playing sentences word-by-word or introducing gaps between
them), it is possible that we might find distinct early effects (see
Kutas & Federmeier, 2011). In our naturalistic Storytime paradigm,
however, this level of control is not possible, and thus, one limitation
of this particular approach is its reduced sensitivity to small, early,
and/or short-lived ERP effects.

Second, the studies on phonological mismatches during
spoken language comprehension typically find a delay in the
mismatch effect for violations that share initial phonemes with the
expected word (e.g., Liu et al., 2006; Van Petten et al., 1999). For
example, Van Petten et al. (1999) found a later N40O effect for

7 Given the nature of our spoken story, we selected 25 high cloze target
words (out of 90) for participants to complete online. For this truncated cloze
task, all target sentences needed to have a minimum of five words before the
target word. We did not use all viable sentences from our stimulus because
participants needed to watch an entire cartoon rather than simply read the
sentence, and having them guess 90 target words dramatically extended the
duration of the study.

8 Given these findings, one might wonder why the participants in the Ito
study did not show form-based prediction at faster presentation rates,
while those in the DeLong study did. We see three possible explanations:
First, the small difference in both immediate predictability and long-distance
predictability led to more rapid prediction of the critical items in DeLong;
Second, because the high predictability sentences formed a much smaller
portion of the Ito stimulus set, participants may have engaged in less
predictive processing in the Ito study; Third, the discourse constraints
allowing for prediction in the Ito study may be more complex and involve
higher level conceptual relations that are only calculated when more
attentional resources are available (as in our offline cloze task), while the
discourse constraints in DelLong might be more associative and less
dependent on attention.



publishers.

and is not to be disseminated broadly.

ghted by the American Psychological Association or one of its allied

article is intended solely for the personal use of the individual user

This document is copyri

This

FORM-BASED PREDICTION IN STORYTELLING CONTEXTS

19

Figure 7
Investigating Long-Distance Prediction in Three Studies
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Note. The three panels correspond to the point at which the preceding context was truncated (relative to a target word). If the sentence was “I like my coffee
with cream and ... sugar”, participants would get “I like my” (four words before target, left panel), “I like my coffee with” (two word before target, middle
panel), and then “I like my coffee with cream and” (right before target, right panel). Cloze probabilities were then determined by calculating how often
participants provided the target word (sugar) in their sentence completions at each time point. Each point represents a single word (and its cloze probability at
varying distances), and there are 160 targets from DeLong et al. (2021), 88 targets from Ito et al. (2016), and 25 targets from Yacovone et al. (the present study).

See the online article for the color version of this figure.

unexpected words that shared initial phonemes with the
predicted word (e.g., dolphins when expecting dollars) relative
to those that did not (scholars when expecting dollars). This
pattern is consistent with a large body of evidence demonstrating
that people incrementally interpret spoken words, restricting
their hypotheses about the word’s identity as it unfolds (e.g.,
Allopenna et al., 1998; Marslen-Wilson, 1987; Marslen-Wilson &
Zwitserlood, 1989). In a predictive system with incremental inter-
pretation, we should expect to see early violation effects when the
initial phonemes violate our predictions (scholars) and later effects
when the initial phonemes are consistent with our predictions
(dolphins).

Thus, it is somewhat surprising that we did not find any latency
differences between our form-similar (ceke) and less-similar rime
(vake) violation effects in either cloze condition. In high cloze
environments, the N400s for both the ceke and vake conditions
began to diverge from the baseline at ~200 ms (see Figure 2). The
only difference between these two effects was in overall amplitude,
as the N400 for ceke was always smaller than the N400 for vake in
predictable contexts. In low cloze environments, we did not see any
significant differences in amplitude, latency, or scalp distribution for
the nonword N400s.

We suspect that these patterns reflect two features of the present
study: First, as we mentioned above, the inherent variability when
using the Storytime paradigm limits our ability to detect small, short-
lived effects. Second, because the present study focused on form-based
prediction rather than incremental interpretation, both nonword

conditions diverged from the target word quite early. Studies of incre-
mentality in spoken language have generally used cohort competitors
that have prolonged phonological overlap with the target or expected
word (e.g., Allopenna et al., 1998; Liu et al., 2006; Van Petten et al.,
1999). For example, Van Petten et al. (1999) had an onset-overlap
condition that shared an entire syllable with the expected word (dollars
vs. dolphins). In contrast, their rime-overlap condition immediately
mismatched the expected word in initial phonemes (dollars vs.
scholars). Thus, we estimate that Van Petten et al. (1999) had a period
of roughly 300 ms (out of a total word duration of ~585 ms) in which
the rime-overlap violation was detectable but the onset-overlap
violation was not.

In contrast, the present study did not have long periods of time in
which listeners could detect the rime nonwords but not the form-
similar nonwords. The form-similar violations only shared an initial
consonant (or consonant cluster) with the target word and then
diverged at the initial vowel (e.g., cake vs. ceke). The rime violations
had the opposite pattern, diverging from the target word at the initial
consonant(s) but sharing an initial vowel (e.g., cake vs. vake). As a
result, the form-similar violations could presumably be detected
shortly after the release for stop consonants (or even on the basis of
co-articulatory cues for nonstop consonants). In other words, the
time needed to disambiguate cake from ceke and cake from vake
probably differs by tens of milliseconds rather than hundreds like in
prior studies. Thus, any delay in violation effects for ceke would
have been short lived, making it difficult to detect using the present
paradigm.
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The final issue to explore is why some spoken language studies
demonstrate reduced N400s for onset-overlap violations (e.g., van
den Brink et al., 2001), while others do not (Van Petten et al., 1999).
In contrast to the present study, Van Petten et al. (1999) did not find
reduced N400s to onset-overlap violations (relative to rime-overlap
violations) after controlling for differences in disambiguation
points. This prior study and our study used nearly identical violation
designs but found different patterns of results—thus, we must attempt
to reconcile these two studies to better understand the conditions in
which form-based prediction occurs.

One clear difference between these two studies is the use of
nonword versus real-word violations (in addition to the clear
differences in disambiguation points described above). When a
listener encounters a nonword like ceke in an environment that is
highly constraining for the word cake, they may be apt to simply
interpret this input as being consistent with cake. In contrast, if a
listener encounters a real-word violation like dolphins in a context
that predicts dollars, it may be more difficult to recover the intended
meaning of the utterance and re-cast dolphins as meaning dollars.
Thus, if the size of the N400 reflects the amount of additional
processing needed to override a prior prediction, activate the newly
perceived lexicosemantic features, and integrate the unexpected
word into the context, then it makes sense that dolphins and scholars
evoke similarly sized N400s. However, if the violation neither
brings new lexicosemantic features nor strongly disconfirms a prior
prediction (e.g., ceke), then it should be processed more similarly to
the expected word than something unexpected. This hypothesis
predicts that nonword and real-word violations should be processed
differently in spoken language comprehension.

Preliminary support for this hypothesis comes from a study of
spoken language comprehension in Mandarin Chinese. In this study,
Liu et al. (2006) had two experiments: the first used real-word
violations similar to Van Petten et al. (1999), whereas the second
used nonword violations similar to the present study.

In Experiment 1, native Mandarin speakers listened to sentences
with highly predictable endings, e.g., “The sound in the radio
became weaker and weaker. It seems that  must buy several new sets
of batteries.” Similar to prior work, the authors manipulated the last
word to be the expected word (batteries, in Mandarin /dian4/-
/chi2/) or one of three real-word violations: an onset-overlap violation
(electric stove, /diand/-/lu2/), a rime-overlap violation (water pool,
Ishui3/-/chi2/), or a no-overlap violation (illness, /bing4/-/tai4/). They
found increased N400 amplitudes for all violations relative to the
expected word—and critically, the timing of these effects differed
from one another, but the overall amplitude did not. Specifically, the
N400 effect for the onset-overlap (/dian4/-/chi2/ vs. /diand/-/lu2/)
emerged later than the N400 effects for the other violations.

In Experiment 2, another set of native Mandarin speakers listened
to both predictable and unpredictable sentences. The authors
manipulated the last word in these sentences to be one of four
conditions: the original word from the sentence; a minimal-onset-
mismatch (a nonword with an onset that mismatches the original
word in one or two features); a maximal-onset-mismatch (a nonword
with an onset that mismatches the original by two or more features);
and a first-syllable-mismatch (a nonword with a completely different
first syllable than the original word, i.e., the rime condition from
prior studies). Similar to the present study, Liu et al. found N400
effects to all nonword violations—however, in predictable contexts,
the size of the N400 effect depended on the degree of form similarity

to the expected word: the N40Os for original word < minimal-onset-
mismatch < maximal-onset-mismatch < first-syllable-mismatch. In
the unpredictable contexts, all three nonword violations produced
similarly sized N400 effects. Taken together, these findings tentatively
support the hypothesis that real-word and nonword violations produce
different ERP effects in spoken language comprehension.

How Does the Present Study Advance Our
Understanding of Late Posterior Positivities?

In the introduction, we mentioned that posterior P600s often
accompany N400 effects in studies of form-based prediction. We
replicated this finding in the present study; however, our results
slightly diverge from the prior literature in two ways:

First, we observed P600 effects for both form-similar (ceke) and
less-similar (vake) violations, and these effects were similar in
magnitude. Prior work has shown that the degree of form similarity
between a violation and an expected target word influences the
size of the P600 (e.g., Ito et al., 2016; Laszlo & Federmeier,
2009; Ryskin et al., 2021; Vissers et al., 2006). So, why might our
two violations elicit similarly sized P600s? While cake may seem
more similar to ceke than vake when processed incrementally,
both violations only differ from the target word by one or two
phonemes. After all, we decided to use rime violations in order to
allow listeners to recover the intended meaning of utterances with
violations in them. Thus, a simple explanation for why the P600s
may be similar in size for both ceke and vake could be that the
P600 reflects a process that occurs after bottom-up processing is
complete (for similar discussion, see Ito et al., 2016). If the
processes indexed by the P600 are reactive rather than predictive,
both ceke and vake can be construed as slight deviations from a more
congruent continuation (cake). On this account, we might expect that
comprehenders will face similar difficulties when attempting to
incorporate these two nonwords into their higher level interpretations
and when reprocessing these violations in order to assess the nature of
the anomalous input.

Second, we observed P600 effects for all violations regardless of
the predictability of the target word. Prior work has demonstrated
that P600s are more robust in high constraint contexts (Gunter
et al., 2000; Kuperberg et al., 2020; van de Meerendonk et al.,
2010; Van De Meerendonk et al., 2009). This finding has led some
researchers to argue that the P600s in the form-based prediction
literature reflect comprehenders’ interpretation of the violations as
misspellings of the predicted word (which also explains why P600s
are not readily observed in low constraint contexts; see Vissers
etal., 2006). So, why did we observe robust P600 effects in our less
predictable conditions? We see two possible explanations for this
pattern.

The first possibility is that the P600 simply reflects the initial
failure to incorporate the bottom-up input into one’s high-level
interpretation of the context, as well as the subsequent disruption to
ongoing comprehension caused by reprocessing the anomalous
input (Brothers et al., 2020, 2022; Kuperberg, 2007; Kuperberg
et al., 2020). On this account, comprehenders do not need to have
strong top-down expectations about what is coming next in the
sentence—however, they must be actively engaged in deep compre-
hension to experience a disruption from the violation (Brothers et al.,
2020). Typically, low constraint contexts do not provide rich details
about an unfolding event; thus, deep comprehension may be difficult
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to achieve in these kinds of sentences. In the present study, however,
the unpredictable sentences are embedded within a larger discourse.
So, although a sentence may be unpredictable at the local level, it is
still contributing to the understanding of the broader context. On this
account, we would expect P600s to violate these unpredictable
sentences because comprehenders are deeply processing the linguistic
material, and the violations are disrupting the ongoing construction of
the narrative.

The second possibility is that there are some sentences in the low
cloze group that are actually highly constraining for a different word
than the one in the story. For example, if someone said, “For my
birthday, I am going to bake a large pie,” you would not consider
the sentence to be anomalous despite it violating your expectations.
In these scenarios, the context is generating strong constraints for
a particular continuation (e.g., cake); however, the speaker never
produces the predicted word. Thus, if the P600 is primarily sensitive
to anomalous (or highly implausible) continuations in high
constraint contexts, then we should expect to see robust P600s in
our low cloze environments when they strongly constrain for an
unobserved alternative word.

To investigate this, we characterized the constraint of all sentences
containing target words (regardless of the cloze probability of the
word from the story). For this analysis, we focused on low cloze
target words (however, Figure 8 presents these exploratory findings
alongside the high cloze condition). All of our low cloze items had
target words with cloze values less than 50% (out of 30 total
responses). To measure the constraint for each item, we calculated
the cloze probability of the most frequent response produced by
participants in our cloze task. We then grouped these items using a

Figure 8

median split approach: Sentences with constraint values greater than
40% were classified as high constraint, and those with values less than
40% were classified as low constraint.

In Figure 8, we visualize the grand average waveforms for three
groups of words: high cloze target words in high constraint contexts,
e.g., “I like my coffee with cream and sugar” (left panel); low cloze
target words in high constraint contexts, e.g., “For my birthday, I
wanted to bake a large pie” (middle panel); and finally, low cloze
target words in low constraint contexts, e.g., “They are only found in
a certain river” (right panel). These waveforms revealed robust
P600 effects for all violation conditions in high constraint contexts
(regardless of the cloze probability of the target word). These
observations tentatively support the claim that the P600 effects in
our low cloze conditions (see Figure 2, bottom panel) were largely
driven by sentences with high cloze competitors.

What Are the Open Questions and What Should We
(Collectively) Do Next?

The present study demonstrates that form-based prediction is a
widespread phenomenon in language comprehension, occurring in
both tightly controlled experiments and in more variable naturalistic
contexts. If prediction is as ubiquitous as our data suggest, a number
of unanswered questions take on new importance: How is prediction
carried out in linguistically diverse populations such as signers and
bilinguals? How is prediction affected by cognitive variability (e.g.,
autism, schizophrenia, or attention-deficit/hyperactivity disorder)?
How is it affected by aging? What is the relationship between
variation in predictive abilities and variation in other measures of

Visualization of the ERP Effects Across Sentence Constraint and Target Predictability
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linguistic ability? How do we represent a form-based prediction
while processing the form of the current (perceived) word? This
latter point seems like a particularly tricky problem if we engage in
long-distance predictions, as this could well involve the simulta-
neous prediction of a number of different lexical items.

One unanswered question, however, seems particularly urgent:
How and when does form-based prediction develop? Most of the
prior work on form-based prediction has recruited highly competent
language users (e.g., adults with high levels of education and
literacy). As we noted above, form-based prediction requires the
rapid coordination of several processing steps. Comprehenders must
leverage contextual information to make inferences at the highest
conceptual levels and then send information back down to preactivate
lower level representations—all before the critical word is produced
and perceived. Thus, effective prediction should require considerable
knowledge about one’s language (and the world, more generally), as
well as a rapid and efficient processing system. Given that young
children are both less knowledgeable and slower at basic cognitive
tasks (Kail, 1991; R. V. Kail & Ferrer, 2007; Kail & Salthouse, 1994),
one might expect that they would be less apt to make form-based
predictions. This deficit could resolve gradually as processing speed
increases and children fill in the gaps in their knowledge. Or there
could be a sudden shift in the system as children adopt different
processing strategies—either as a side effect of their effectiveness
(e.g., ignoring predictions until they have been found to be accurate)
or based on their experiences with literacy (Huettig & Pickering,
2019; Mani & Huettig, 2012).

To date, most of the research on predictive processing in children
has focused on semantic prediction using the visual world paradigm.
For example, Mani and Huettig (2012) presented German-speaking
2-year-olds with visual displays that had two objects (e.g., a cake
and a bird). On each trial, the children would hear a sentence that
either contained a neutral verb or a highly constraining verb. For
example, “The boy eats (sees) the big cake” (German translation,
“Der Junge i3t (sieht) den grolen Kuchen”). The authors found that
the children made predictive eye movements to the critical object
(the cake)—but only after hearing the highly constraining verb
(eats). These and other similar findings suggest that young children
can use contextual cues to generate predictions (see Borovsky et al.,
2012; Kidd et al., 2011; Lew-Williams & Fernald, 2007).

These findings, however, have two general limitations: First, it is
unclear from the dependent measure in these studies whether
children are making predictions about what is going to be said next
or simply making inferences about the event under discussion. Prior
work has shown that adults and children will look toward objects
that are contextually relevant—even when they presumably know
that this object is unlikely to be explicitly mentioned. For example,
when given wh-questions like “What did the man eat?” people will
look longer at edible objects in the scene (Atkinson et al., 2018;
Golinkoff et al., 2013; Goodwin et al., 2012; Jyotishi et al., 2017;
Seidl et al., 2003; Sussman & Sedivy, 2003; Yuan et al., 2011).
Second, even if predictive eye movements are generated by a
linguistic prediction, it is unclear whether the prediction is at the
level of meaning and/or form, i.e., are 2-year-old children activating
the concept of cake, the lexical item cake, or the phonological form of
that lexical item?

To the best of our knowledge, there is only one study that directly
explores form-based prediction in young children. Gambi et al. (2018)
conducted a visual world eye-tracking study with English-speaking

adults and children (2-5 years old). On the critical trials, the visual
display consisted of two objects, each one positioned on a different
side of the screen. One object would typically be labeled by a word
beginning with a vowel (e.g., an ice cream cone). The other object
would typically be labeled by a word beginning with a consonant
(e.g., a soccer ball). In the test sentence, the two pictures were labeled
with an indefinite determiner that provided predictive information
about the identity of the upcoming noun (e.g., “Can you see an ... ice
cream?”). Participants’ performance on these form-based prediction
trials was contrasted with their performance on trials in which
different numbers of objects appeared on each side of the display
and a number word was used in the test sentence (e.g., “Can you see
two ... ice creams?”). To provide more time for making predictions,
the authors inserted a pause after the determiner such that the target
word was produced roughly 1,200 ms later.

In the number trials, results indicated that all age groups were able
to shift their gaze to the correct referent after hearing the number
word. Gambi et al. (2018) interpreted this finding as semantic
prediction—although, it could also be interpreted as a product of
incremental semantic analysis (i.e., participants shift to looking at
sets of objects after hearing two, just as they might shift to look at
green objects after hearing green). In the form-based prediction
trials, the youngest children failed to shift their gaze on the basis of
the indefinite article, suggesting that they were unable to use the
phonological cues from the determiner to predict the phonological
form of the upcoming noun and then correctly infer the referent.
Three- to 5-year-old children showed fragile effects of form-based
prediction across their analyses, which led the authors to conclude
that form-based prediction was only reliably observed in adults.

Based on this finding, one might conclude that, even in the most
supportive of contexts, form-based prediction is absent until at least
5 years of age (see Pickering & Gambi, 2018). We suspect, however,
that this conclusion is premature, and we see two reasons why
additional research is needed: First, the phenomenon at the heart of
Gambi et al. (2018) appears to be a rather weak one that is atypical of
form-based prediction more broadly. In their study, words were only
predictable because of arbitrary phonological rules that allowed
participants to predict the onset of an upcoming word and then infer
the correct referent. In contrast, when a word was predictable in the
present study, it was because the content of the discourse constrained
the possibilities of which words could or should come next, which in
turn constrained expectations for possible word forms. Thus, form-
based prediction in our study was based on a top-down flow of
information, whereas prediction in the Gambi study relied on the form
of one word constraining the form of the next.

We suspect that this latter pathway is rarely useful in the wild:
Phonological constraints are often highly local cues (e.g., the a/an
distinction requires attention to immediately adjacent phonemes).
Thus, there is little time to use these constraints to generate predictions
in real time. Furthermore, predictions that are based solely on
phonological information would generally be quite coarse, as there
are typically just two or three alternative forms of the predictive cue
(resulting in thousands of possible lexical candidates). Gambi et al.
(2018) carefully designed their study to overcome these real-world
impediments by reducing the discourse context to just two objects and
using artificially long prosodic breaks to afford more time for
prediction. It is remarkable that adults in this study were able to
flexibly adapt to these circumstances, but it is not surprising that
children were less flexible. While the a/an constraint is probably the
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best known test case for form-based prediction, the findings have been
variable, and the effects, if they exist, appear to be quite weak (for
additional context, see DeLong et al., 2005, 2017; Ito et al., 2017a,
2017b). We suspect that these inconsistent findings have less to do
with the fragility of form-based prediction and more to do with the
minimal incremental value of this particular predictive cue.

Second, the wider literature on children’s language processing
strongly suggests that, similar to adults, children have robust predictive
abilities. While none of these studies provide direct evidence for form-
based prediction, each of the relevant findings suggests that lexical
prediction is common in children, and that it is not radically different
from lexical prediction in adults. Thus, if lexical prediction in
adulthood involves form-based prediction, then these findings suggest
that children engage in form-based prediction as well.

For example, like adults, children show robust N400 effects
during comprehension, which suggests that some degree of lexicose-
mantic preactivation emerges in adolescence (e.g., Friedrich &
Friederici, 2006; Henderson et al., 2011; Juottonen et al., 1996). Prior
work using the Storytime paradigm has shown that N400 responses
in adults and children (5-10 years old) are best predicted by the cloze
probability of a word (Levari & Snedeker, 2024). This finding
suggests that both age groups are sensitive to the predictability of a
word given its context. Finally, developmental researchers have long
used versions of the cloze task to assess children’s comprehension
and morphological productivity (Berko, 1958; Brown & Berko,
1960; Carroll, 1971; Shanahan et al., 1982; Skarakis-Doyle &
Dempsey, 2008). In these studies, children must correctly predict a
word, including its precise phonological form, in order to accurately
complete the sentence.

These studies, however, clearly stop short of demonstrating that
children often (or ever) use top-down contextual information to
predict upcoming words in real time. For this reason, we are
currently conducting a study parallel to the present experiment with
young children (5-6 years old) to see if they also show reduced
N400 effects to form-similar nonwords in highly predictable
contexts. The findings of this study will place hard constraints on our
theory of how this central skill develops.

Conclusion

The present study demonstrates that form-based prediction is a
widespread phenomenon in language comprehension, occurring in
both tightly controlled experiments, as well as in more variable
naturalistic contexts. To do this, we relied on a novel naturalistic
listening task in which participants simply listened to a narrative
with experimental manipulations spliced into it. Our findings
suggest that adults were actively predicting the phonological form of
upcoming words, as evidenced by reduced N400 responses to form-
similar violations in highly predictable contexts. In addition, we
observed robust late posterior positivities to all violations in our
task, suggesting that adults engage in deep comprehension while
listening to naturally produced stories. The success of this paradigm
in eliciting robust prediction opens the door for testing predictive
abilities in a wide range of populations and age groups. With these
findings, we conclude that form-based prediction is a common
aspect of comprehension in the wild, and future research must begin
to characterize how this phenomenon emerges across development
and across a wider range of contexts.

Constraints of Generality

In the present study, we specifically recruited native English-
speaking adults—and thus, our findings (when taken in isolation)
can only characterize the phenomenon of form-based prediction in
this population. We selected native English-speaking adults for a
few reasons: First, English is the target language that has been
predominantly used in many prior studies on form-based prediction
in the literature. For this reason, we had clear predictions about the
magnitude and directionality of our effects. Second, English is the
dominant language used by the community in the Greater Boston
area, as well as by the study team. We acknowledge that English-
speaking adults are often overstudied in psycholinguistics research,
and thus, in future work, we aim to characterize similar phenomena
in different age groups (e.g., toddlers, school-aged children,
teenagers), as well as in different language families and linguistic
modalities (e.g., American Sign Language).
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